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The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium
between the surface reactive groups and the potential determining ions in the solution (i.e., charge
regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise
molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this
structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads
to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the
solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and
ionic excluded volumes and van der Waals interactions.
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Interfaces involving polar liquids are often charged. The
charging is due to ionic dissociation, adsorption, or both at
the interface [1,2]. This leads to a bulk potential and charge
redistribution in the vicinity forming an electric double
layer (EDL). Understanding the EDL is of key importance
to the theory of electrolytes, colloid science, soft-matter
systems, rheology and dynamics of complex fluids, corro-
sion, and material science. As the solvent is typically
uncharged, it is only considered to be less important than
the ions. Hence, it is often ignored or is considered only to
provide molecular interpretation for the dielectric permit-
tivity [3–11]. We demonstrate that the solvent role is much
more important than that. It provides a structural frame-
work for the solution, which has a strong effect on the
surface charge formation. Surprisingly it is the nonelec-
trostatic interactions (e.g., excluded volume, van derWaals)
that determine the properties of charged interfaces.
An early analysis of an EDL was offered by Gouy

[12,13] and Chapman [14], which was based on the
continuum Poisson-Boltzmann equation [15]

∇2Ψ ¼ −
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X
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whereΨ is the electrostatic potential, qi is the charge of ion
species “i” (in units of the elementary charge e), kBT is the
thermal energy, ρ0i is the bulk number density of charged
species i, and ε and ε0 are the medium dielectric permit-
tivity and the dielectric constant of vacuum. The problem
was solved by fixing the value of the surface potential
Ψ ¼ Ψs. Alternatively, the potential derivative (i.e., the
surface charge σ) can be specified to a known value, or
εε0ð∇ΨÞs ¼ σ. Both conditions are well defined and very
popular. However they are not physically justified. This

was first recognized by Ninham and Parsegian [16] who
argued that the surface charge and potential should be
determined from the thermodynamic equilibrium between
the surface groups and the dissolved species that chemi-
cally interact with them. The ionic species that attach to or
detach from the surface determine the charge and potential
at the interface. They are called potential determining ions
(PDIs). This mechanism is called surface charge regulation
and it is the condition that provides a physically correct
description [17–25]. While the surface charge regulation
may involve multiple chemical reactions [20], a reasonable
model was suggested by Chan et al. [17], based on the
equilibria

AHþ
2 þ BH⇌AHþ BHþ

2 ; pKþ ¼ −log10Kþ;

AHþ BH⇌A− þ BHþ
2 ; pK− ¼ −log10K−; ð2Þ

whereKþ andK− are the equilibrium constants, andAH is a
surface chemical group that can either bind or release a
hydrogen ion depending on local densities ρBHþ

2
, ρBH of

species BHþ
2 and BH in the solution. The species BH can

lose another proton in the reaction 2BH⇌B− þ BHþ
2 and

become negative. Alternatively it may bind one and
become positive. The latter species is the PDI. Its concen-
tration is defined in the subsurface layer at the interface.
This model translates into the following relationship
[17,26]:

σ ¼ eΓ
ρsAHþ

2

− ρsA−

ρsAH þ ρsAHþ
2

þ ρsA−
: ð3Þ

Γ is the number of ionizable groups per unit area at the
surface and ρsi ði ¼ AH;AHþ

2 ;A
−Þ are the surface densities
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of the various charged and uncharged groups attached at the
boundary of the EDL. Equation (3) provides a physically
consistent boundary condition to Eq. (1). The second
boundary condition requires charge neutrality away from
the surface.
The continuum model is incomplete since it does not

take into account the structure of the solution. A better
theoretical framework is offered by more modern statistical
mechanical approaches [3–9,11,27]. However, these mod-
els are often simplified by representing the solvent as a
structureless continuum and account explicitly only for
interactions between the ionic species. Such models are
defined as “primitive." In contrast, models that take into
account the interactions between all species including the
solvent fall under the “civilized” category [11]. The
primitive model for dilute electrolyte solutions is equivalent
to the continuum theory based on equation (1) [28]. For
high electrolyte concentrations primitive models may
produce structural peaks in the density profiles, which
are due to ion-ion correlations but the effect of the solvent
molecular contribution is still absent.
Recently Heinen et al. [9] incorporated a surface charge

regulation condition into a primitive model for describing
charged colloidal suspensions using an integral equation
approach [29]. This work presents a step forward but it is
incomplete because it neglects the solvent effect on the
structure.
We argue that the physically adequate analysis of an

EDL should include charge regulation at the interface in
conjunction with a full account of the solvent contribution
to the solution structure. Such an analysis is not an
incremental improvement but reveals a number of new
effects that were yet unknown. This is because the surface
charge regulation [see Eqs. (2) and (3)] is extremely
sensitive to the local structure and ionic density in the
vicinity of the reaction surface. While the PDIs are very
important, their local density is dominated by the solvent
due to its overwhelmingly high concentration. The sol-
vent structure determines that of the PDIs and hence,
couples with the charge regulation [see Eq. (2)]. The
factors governing the coupling are the excluded volume
and long-ranged attractive interactions between all
species.
Our analysis of the EDL is based on classical density

functional theory (DFT) [3,30–34] starting with a grand
thermodynamic potential that has the form

Ω½fρiðzÞg� ¼ kBT
XN
i¼1

Z
dzρiðzÞfln ½λ3i ρiðzÞ� − 1g

þ Fex
HS½fρiðzÞg� þ Fex
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þ
XN
i¼1

Z
dzρiðzÞ½VextðzÞ − μi�; ð4Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=ð2πmikBTÞ

p
is the thermal de Broglie

wavelength, h being the Planck’s constant, mi is the mass
of species “i,” and ρiðzÞ is the local density (z being the
coordinate normal to the interface) of component “i.”
VextðzÞ is the external field due to the charged interface.
Fex
HS½fρiðzÞg� and Fex

long½fρiðzÞg� account for the hard sphere
(excluded volume) and all long-range interactions, respec-
tively. The hard sphere (HS) interactions are implemented
using the theory of Rosenfeld [35], while the long range
interactions are expressed by Lennard-Jones (LJ) and
Coulombic electrostatic (EL) contributions. The grand
potential defined by Eq. (4) corresponds to an open system
in contact with infinite reservoir for all species to ensure
constant chemical potentials μi.
The electrolyte is dissolved in a hard core-LJ solvent.

The bulk LJ contribution between species with diameters dj
and dj, separated by distance rij, is given by

ΦLJðrijÞ ¼ 4ϵij
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�
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where dij ¼ ðdi þ djÞ=2. The LJ interaction of a molecule
(or ion) of type “i” with a wall is
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where ϵij and ϵi determine the magnitudes of the LJ energy.
All charged species experience electrostatic interactions in
the bulk

ΦelðrijÞ ¼
qiqj

4πεε0rij
; rij > dij; ð7Þ

as well as with the charged wall

ΦelðzÞ ¼
qiσz
2εε0

; z > di=2: ð8Þ

The interaction energy is infinite for separations less than
the cutoff distances dij ¼ ðdi þ djÞ=2 and di=2 [see
Eqs. (5) to (8)]. A LJ fluid with isotropic interactions
cannot provide a molecular interpretation of the dielectric
solvent properties. They are accounted for by the intro-
duction of a bulk dielectric permittivity as a parameter to
scale the electrostatic terms [Eqs. (7) and (8)] to physically
correct magnitudes. Such an approach is justified for
moderately concentrated solutions [11,27]. The solution
consists of (i) solvent molecules, (ii) PDIs (BHþ

2 ), (iii) back-
ground ions with the same charge as the PDIs that do not
chemically bind to the EDL interface, and (iv) negative
counterions (B−) that are common to the PDIs and the
background ions. The LJ energy parameters are assumed to
be the same for all possible interactions: ϵij ¼ ϵi ¼ ϵ.
While this is a rather simplified model, it captures two
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very important physical characteristics of the solution: the
excluded volume of all species, and the long-range inter-
actions such as Coulombic and nonelectrostatic attractions
between all species as well as with the surface. The model
is civilized as the solvent is explicitly taken into account.
The focus of the analysis is on the effect of the solvent
structure on the surface charge regulation given by Eq. (2).
The grand thermodynamic potential Eq. (4) is minimized

with respect to the density distribution of each component,
δΩ½ρiðzÞ�=δρiðzÞ ¼ 0, using the Tramonto code [36]. The
latter was modified to include the surface charge regulation
boundary condition Eq. (3). This procedure gives the
spatial distribution of all species in the EDL. The surface
charge σ is obtained from balancing it against the bulk
excess charge to achieve global electroneutrality.
Figure 1 shows the dependence of the surface charge σ

on the size of the solvent molecules. All ionic species have
the same molecular diameter equal to d. The latter is
adjusted to d ¼ 0.288 nm so that for overall density ρd3 ¼
0.8 and solvent diameter ds ¼ d, the total molarity of all
species is 55.5 M. All ions are monovalent and the ionic
strength is 10 mM, which includes both PDIs (with
concentration 0.1 mM) and non-PDIs, both sharing the
same counterion. This corresponds to a Debye wavelength
κ−1 ¼ 3.04 nm, or ðκdÞ−1 ¼ 10.56. The density of surface
ionizable groups [see Eq. (2)] is 8 × 1018 m−2, or 0.66 per
d2. The parameters for the surface reaction are pKþ ¼ −2
and pK− ¼ 6 (see [26]). In the limit ds → 0, the solution
becomes primitive and all curves coalesce into a single
point, σd2=e ¼ −2.94 × 103. However, the physical reality
is represented by the far right region of the figure, where the
solvent size is comparable to that of the ions. This
illustrates the importance of the neutral solvent molecules
and their interactions for understanding charged interfaces.

The top curve in Fig. 1 illustrates the effect of purely
excluded volume interactions on the surface charge σ. It
shows that the magnitude of the surface charge starts to
appreciably change after the solvent diameter exceeds
∼0.17. Including attraction between the species (including
the solvent) has a dramatic effect on the system behavior.
As the LJ parameter ϵ increases (in steps of 0.1 kBT) the
charge vs solvent diameter curves gradually become non-
monotonic and above ϵ=kBT ¼ 0.3 start exhibiting a
minimum. The dependence of the charge on the solvent
diameter becomes very strong as the latter approaches
values comparable to the ions. Note that in a real electrolyte
solution, the ionic dimensions are similar to that of the
solvent species [37]. The strong effect of the solvent size on
the surface charge is driven by the competition between the
excluded volume effects and the attraction between the ions
and the solvent molecules. As the solvent molecules
“grow” the ions (most importantly the PDIs) have less
space available and are expelled towards the surface. At the
same time the attractive interactions lead to solvation of the
ions and their transfer from the interface into the bulk. The
greater the LJ parameter, the stronger the solvation effect.
The LJ interactions with the wall for all species also
become stronger with the increase of ϵ but nevertheless
the solvent-ion interactions prevail. This may not be the
case if different values for the LJ parameters for bulk and
wall interactions are selected. Our approach allows us to
analyze electrolyte properties and interpret experimental
observations that go beyond simple electrostatics [38–43].
Accounting for the solvent contribution alone will still be
insufficient if the proper surface chemistry is replaced by a
constant charge or potential condition at the interface.
In the primitive limit only the ions are involved and the

actual density is much less than the one for liquid states,
ρd3 ≃ 0.8. The solution is then represented by a plasmalike
gas. Its structure also remains gaslike and that is problematic
when a surface charge regulation condition is enforced. As
the solvent diameter increases so does the overall solution
density and in the presence of attractive interactions the
system undergoes a phase transition as indicated by the
interruption of the charge vs solvent diameter curves in
Fig. 1. The region under the dotted curve corresponds to the
spinodal domain in the phase diagram of the solution. The
dot represents the surface charge at the critical point and
the dashed curve that passes through that point is for
ϵ=kBT ¼ 0.76. The position of the spinodal has been
compared to results for decomposition in LJ fluids
[26,31]. This formal phase separation again indicates that
the primitive models are not working when applied to a
charge regulating EDL. These models miss very important
physical effects because they are gaslike, and yet applied to
the liquid density domain. The situation is similar to
applying the ideal gas equation to dense liquids. The surface
charge density is greatly affected by that inconsistency.
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FIG. 1. Surface charge of an EDL as a function of the solvent
molecular diameter. The different curves are for different values
of the LJ parameter ϵ, which starts at zero (top curve) and
increases by increments of 0.1 kBT, with the exception of the
dashed curve, which is for ϵ=kBT ¼ 0.76 (see the text). The dot
corresponds to the critical point. The curves for ϵ=kBT ¼ 1.1 and
ϵ=kBT ¼ 1.2 are extrapolated (dot-dashed parts) since in that
region the surface charge is so sensitive to ds=d that exact
computation becomes extremely difficult.
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Figure 2 shows the density distribution of all solution
components in the EDL for ϵ=kBT ¼ 0.0 and ds=d ¼ 1.
The dashed lines present results obtained using the primi-
tive model, while the full curves are results from a
computation that includes the solvent. The relative
increase in density of the PDIs and non-PDIs (the two
curves overlap) in the subsurface layer next to the inter-
face is less than 20%. In contrast, if the solvent molecules
are taken into account, the increase of the PDIs and non-
PDIs in the subsurface layer is about seven times the bulk
value. The solvent dominates the structure by creating a
matrix where the only option for an ion (positive or
negative) is to move into a vacancy that is not occupied by
a solvent molecule. The excluded volume effect alone is
so strong that even the surface co-ions peak near the
interface. The background (non-PDI) counterions always
follow the same density distribution shape as the PDIs
because of the same charge. This implies that both ionic
species respond to the electrostatic potential in exactly the
same way. However, the surface charge regulation chemi-
cal equilibria (2) involve only the PDIs. Therefore, they
regulate the charge, while all other ionic species are
affected only by the electrostatics. More details are out-
lined in the Supplemental Material [26].
As the distance from the solid interface increases this

structure decays as seen from Fig. 2. The rate of decay can
be quantitatively assessed by observing the peak height
position with distance as suggested by Martynov [44].
According to that analysis we expect that the peak heights
for each component will decrease exponentially with the
distance. For the charged ions, that implies first subtracting
the continuum electrostatic component characterized by the
Debye wavelength κ−1. After such subtraction and normal-
izing the distributions with the respective bulk values we
find that all curves collapse onto a single curve (see Fig. 3).
The peak heights of that curve exponentially decrease with
a characteristic decay length ðβdÞ−1 ¼ 1.3. The solution
structure dominates the properties near the charged surface,

but its effect decreases with distance more rapidly than that
due to pure electrostatics characterized by the Debye
wavelength. It is near the surface, however, where the
structure is crucial for the surface charge.
The charge formation at the boundary of an EDL is

governed by the chemical equilibrium between the surface
ionizable groups and the PDIs in the subsurface layer. It is
very sensitive to the precise solution structure in the vicinity
of the interface. The structure couples to the surface
chemistry leading to a complex dependence of the surface
charge density on the solvent molecular size. This complex-
ity would be missed unless the solvent molecular effect and
the surface charge regulation are both taken into account.
The civilized analysis reveals that there are two character-
istic length scales associated with (i) the electrostatic long-
range screening, κ−1, and (ii) structure, β−1, which deter-
mines the solution-wall interactions at close proximity, but
rapidly decreases with distance. In effect the neutral solvent
governs the magnitude of the surface charge. It is also valid
to state that a civilized model alone is inadequate if a
constant charge or potential is enforced at the EDL inter-
face as an external condition.
Our approach allows further investigation of properties

of the EDL that are beyond the electrostatic interactions
[38–43] such as solvation of the ions in the bulk and at the
wall, and interactions and structure of large charged
molecules (proteins, polyelectrolytes) near charged walls.
It can be generalized to address nonequilibrium situations
like surface reaction kinetics and solution transport [31,45].
A better understanding of the EDL properties at the
molecular level will lead to new insights in many areas
of physical sciences.
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