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Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag
effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density
electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We
describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and
calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum
followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental
observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag
resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and
hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.
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The Coulomb drag effect is a sensitive probe of
interactions and collective phases in bilayer systems (see
Refs. [1,2] for a review). In its usual setup, an electric
current in the first layer, Idrive, drags charge carriers in the
other one. If the second layer is closed, the drag force is
compensated by the Coulomb force induced by a voltage
drop, Vdrag, and the drag resistivity of the bilayer ρD ¼
Vdrag=Idrive is measured. If the bilayer involves two weakly
coupled Fermi liquids, the temperature dependence of the
drag resistivity at low temperatures is quadratic, ρD ∼ T2,
which is well established both theoretically [3–5] and
experimentally [6,7]. Any deviations from that Fermi-
liquid behavior can signal the appearance of collective
phases or correlations in the bilayer system.
A number of recent experiments [8–11] on the electron-

hole GaAs=GaAlAs bilayers have observed an anomalous
temperature dependence of drag resistivity at the intermedi-
ate doping neðhÞ ≈ 5 × 1010 cm−2. The T dependence of ρD
was shown to achieve a minimum, followed by a growth
and saturation at lower temperatures, which were rather
insensitive to the concentrations’mismatch (see also related
experiments for other realizations of electron-hole bilayers
[12–14]). This behavior cannot be attributed to interlayer
exchange and correlation effects [15–17], which are relevant
in that regime, and it does not appear for electron-electron
and hole-hole bilayers for similar parameters. Therefore,
there is strong evidence for an excitonic origin of the effect,
but its detailed understanding is still lacking.
Therewere a number of theoretical attempts to explain the

experiments based on theBardeen-Cooper-Schrieffermodel
of electron-holeCooperpairing [18–21],which is valid in the
high doping regime and can be the origin of the dipolar
superfluidity [18,22,23]. The mean-field theory predicts a
jump of drag resistivity at the pairing temperature to a value
comparable to a single-layer resistivity [24]. The jump can

be smoothed by pairing fluctuations [25,26], which are a
precursor to the paired state; both Aslamazov-Larkin [27]
and Maki-Thomson [28–30] contributions are important
here. However, Cooper pairing and the fluctuations are very
sensitive to themismatch [31,32], in contrast to experimental
observations.
Here we present an alternative theoretical scenario for the

effect involving the formation of excitons, which are a
bound state of spatially separated electrons and holes, with
a small binding energy, Eexc. For T ≫ Eexc, excitons ionize
to form a classical electron-hole plasma and the drag effect
is dominated by the Coulomb interactions. At low temper-
atures, the appearance of excitons strongly enhances the
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FIG. 1. Shown is the temperature dependence of the drag
resistivity ρD for matched concentrations of electrons and holes
with excitons (a) and without excitons [inset (b)]. The curves
correspond to different density per layer n0eðhÞ denoted by their
values in cm−2, and the axes of the inset coincide with ones of the
main plot. The drag resistivityρD achieves aminimumatTDwithin
ionization-recombination crossover between the high-temperature
regime, T ≫ Eexc, where the drag is dominated by Coulomb
interactions in the electron-hole plasma, and the low-temperature
regime, T ≈ Eexc, where the drag is dominated by excitons.
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drag and single-layer resistivities, leading to the upturn in
the former as it is presented in Fig. 1(a). The anomalous
behavior is robust against the mismatch in the concen-
tration of electrons and holes: while the magnitude of the
upturn is affected by the mismatch, the temperature TD,
where the drag resistivity reaches minimum, is insensitive
to it. Our proposed scenario is valid and self-consistent at
low doping, and the calculated excitonic upturn is consid-
erable larger than the observed one. Nevertheless, our
results are in a qualitative agreement with the existing
experiments. The main conclusion of our work is that
the picture of exciton formation is more relevant to the
intermediate doping regime in experiments than the sce-
nario of electron-hole Cooper pairing.
Model and the excitonic crossover.—The system of spa-

tially separated electrons and holes, which can bind to form
excitons, can be described by the following Hamiltonian:

Ĥ ¼
X
pS

ϵexcðpÞbþpSbpS þ
X
ps

ϵαðpÞaþαpsaαps

þ 1

2

X
pp0q

ss0αα0

Vαα0 ðqÞaþα;pþq;sa
þ
α0;p0−q;s0aα0p0s0aαps:

ð1Þ

Here aαps and bps are annihilation operators for electrons
(α ¼ e ¼ 1), holes (α ¼ h ¼ −1) and excitons with momen-
tum p and internal degeneracy spin index s ¼ ðj↓i; j↑iÞ
and S ¼ ðj↓↓i; j↑↓iÞ; j↓↑i; j↑↑iÞ. Their dispersions are
ϵαðpÞ ¼ p2=2mα and ϵexcðpÞ ¼ p2=2mexc − Eexc with
mexc ¼ me þmh and Eexc being the exciton mass and
its binding energy; VααðqÞ ¼ 2πe2=ϵq and VαᾱðqÞ ¼
−2πe2e−qd=ϵq are bare intralayer and interlayer Coulomb
interactions with interlayer spacing d and bare dielectric
permittivity ϵ. We do not specify the interaction with disorder
explicitly, but assume relaxation times τα and τexc to be
momentum independent, which implies the short-range dis-
order to be the dominant scattering mechanism.
For all numerical calculations we use the set of param-

eters related to the GaAs=GaAlAs bilayer in experiments
[8]: me ≈ 0.067m0, mh ≈ 0.4m0, d ≈ 30 nm, and ϵ ¼ 12.4
withm0 as the bare electronic mass. The relaxation times τα
are parametrized by mobilitiesMe ≈ 2 × 106 cm2=Vs, and
Mh ≈ 3 × 105 cm2=Vs. The excitonic relaxation time,
τexc ¼ m�τeτh=ðτeme þ τhmhÞ, where the reduced mass
is m� ¼ memh=ðme þmhÞ, corresponds to the mobility
Mexc ≈ 3.4 × 104 cm2=V s. Nevertheless, excitons, as non-
local objects, are more sensitive to interlayer tunneling
and other factors, so their mobility can be considerably
reduced; here we use Mexc ≈ 104 cm2=Vs. The effective
Bohr radius, aB ¼ ℏ2ϵ=e2m� ≈ 11.8 nm, and Rydberg
energy, EB ¼ m�e4=2ℏ2ϵ2 ¼ 55.4 K, give the spatial and
energy scales. The exciton energy, Eexc, can be consid-
erably smaller than EB at d ≳ aB and is sensitive to
screening, so here we use Eexc ≈ 0.5 K, corresponding to

the exciton size aexc ≈ 110 nm, as an independent param-
eter. The model is self-consistent if excitons weakly over-
lap, which corresponds to the doping neðhÞ ≲ 1010 cm−2.
The ground state of the model is believed to be the

exciton condensate that forms at the temperature TQ ≲ Eexc

and can coexist with the degenerate gas of electrons or
holes in the presence of a mismatch of their concentrations.
However, below we focus on the ionization-recombination
crossover regime T ≳ Eexc, where the distributions of
electrons, holes, and excitons are nondegenerate. To
calculate their concentrations, we recall that in experiments
the total concentrations of charged particles per layer
n0α are controlled independently by electrical doping,
so nexc þ nα ¼ n0α. Here nα and nexc are concentrations
of quasiparticles. Reintroducing the grand canonical
Hamiltonian, ĤΩ ¼ Ĥ −

P
αμαðn̂exc þ n̂αÞ, with chemical

potentials μα as Lagrange multipliers, we get the chemical
potential of excitons as μexc ¼ μe þ μh. The equation for
concentrations can be simplified to nenh=n� þ nα ¼ n0α,
where the concentration n� ¼ m�T exp½−Eexc=T�=ð2πℏ2Þ.
The temperature dependencies of fermionic and excitonic
concentrations are given by

nα ¼
1

2

�
δn0α − n� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδn0αÞ2 þ n2� þ 2n�n0T

q �
;

nexc ¼
1

2

�
n0T þ n� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδn0αÞ2 þ n2� þ 2n�n0T

q �
;

ð2Þ

where δn0α ¼ n0α − n0ᾱ and n0T ¼ n0e þ n0h are the concen-
tration mismatch and the total concentration.
The temperature dependence of the concentrations is

depicted in Fig. 2. At low temperatures, T ≪ Eexc, the
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FIG. 2. The temperature dependence of concentrations of
electrons ne, holes nh, and excitons nexc, which are given
by the Eqs. (2), for fixed total concentrations per layer
n0e ¼ 8 × 109 cm−2, n0h ¼ 6 × 109 cm−2. The dependencies for
other values of n0eðhÞ are qualitatively similar. At high temper-
atures T ≫ Eexc there is a long excitonic tail nexc ≈ n0en0h=
n� ∼ T−1. The concentration of excitons at zero temperature is
equal to that of the minority species (holes, in this case) in the
limit of large temperatures.
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fraction of unbound electrons and holes is exponentially
small, while within the crossover, T ≳ Eexc, there is a long
nondegenerate tail of excitons decreasing as T−1 according
to nexc ≈ n0en0h=n�. The exciton gas can be considered
nondegenerate until TQ ≈ 0.3 K [33].
Phenomenology of the drag effect.—In the presence of

electrons, holes, and excitons the conductivity tensor of the
bilayer system is given by

�
Je
Jh

�
¼

�
σexc þ σe −σexc − σD

−σexc − σD σexc þ σh

��
Ee

Eh

�
; ð3Þ

where σα ¼ nαe2τα=mα and σexc ¼ nexce2τα=mexc are their
Drude conductivities. Excitons, being composed of elec-
trons and holes from different layers, contribute to both
diagonal and off-diagonal components of the conductivity
tensor with opposite signs. The transconductivity σD
originates from the Coulomb interaction between electrons
and holes and is calculated microscopically below. The
drag resistivity ρD and single-layer resistivities ρα, being
the components of the inverted conductivity matrix (3), can
be written in a compact way,

ρDðαÞ ¼
σDðᾱÞ þ σexc

σeσh þ ðσe þ σhÞσexc
: ð4Þ

At zero temperature the excitonic contribution dominates,
and they become

ρD ¼
X
α

Θαᾱmα

ðn0α − n0ᾱÞe2τα
; ρα ¼ ρD þ Θᾱαmexc

n0αe2τexc
: ð5Þ

Here Θαᾱ ¼ Θðnα − nᾱÞ is the Heaviside function. If
densities of electrons and holes are perfectly matched,
both single-layer resistivities ρα and ρD diverge at T ¼ 0.
This corresponds to an insulating excitonic ground state
with the perfect drag effect: the relation between the electric
current in a layer, induced by a current in the other layer,
is Idrag ¼ −Idrive. Our considerations assume T ≫ TQ,
where there is a competition between σexc and σD, but
the zero-temperature values (5) reflect the strength of the
low-temperature upturn.
Electron-hole transconductivity.—The transconductivity

σD can be calculated in the second order of perturbation
theory in the interlayer Coulomb interaction [5] as follows:

σD ¼ −
1

16πT

X
q

Z
∞

−∞
dω

sinh2ðω=2TÞΓ
RA
xe ðq;ω;ωÞ

× ΓAR
xh ðq;ω;ωÞjUehðq;ωÞj2;

ð6Þ

where Uðq;ωÞ is the screened interlayer interaction
and ΓRA

xα ðq;ω;ωÞ is the current-charge-charge nonlinear
susceptibility. If the relaxation times τα are momentum
independent, as we assume here, it is given by [34]

ΓRA
xα ðq;ω;ωÞ ¼ αqx

eτα
mα

ΠR
α2ðq;ωÞ; ð7Þ

where ΠR
α2ðq;ωÞ is the imaginary part of the polarization

operator, which for a nondegenerate gas is given by [35]

ΠR
α2 ¼ −

ffiffiffi
π

p
n ~qα

Tq
sinh

�
ω

2T

�
exp

�
−

~q2αω2

4T2q2
−

q2

4~q2α

�
: ð8Þ

Here the ~qα ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mαT

p
is the characteristic thermal

momentum scale. For the interaction Uðq;ωÞ, the static
Debye-Hückel approximation, which ignores the presence
of neutral excitons, yields

UehðqÞ ¼
2πe2

ϵ

qe−qd

ðqþ κeÞðqþ κhÞ − κeκhe−2qd
: ð9Þ

Here καðqÞ ¼ κ0αfκðq= ~qαÞ, κ0α ¼ 2πe2nα=ϵT is the Debye-
Hückel screening momentum, and fðxÞ is the dimension-
less function fð2xÞ ¼ ffiffiffi

π
p

exp½−x2�ErfiðxÞ=2x with ErfiðxÞ
to be the imaginary error function. The static screening
approximation does not take into account a possible
plasmon contribution [34,36], which considerably enhan-
ces the drag effect for 0.4≲ T=μ≲ 1. However, in the
nondegenerate regime, the plasmons become strongly
damped and can be ignored. The integral over frequencies
in Eq. (6) can be calculated explicitly, and we get

σD ¼
ffiffiffi
π

p
32

e2

h
τeτh
ℏ2

q4d
memh

Iq ð10Þ

with momenta qd ¼ ℏd−1, ~q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2m�T

p
, and a dimension-

less integral Iq over rescaled momentum q given by

Iq ¼
Z

∞

0

dx
~q�κ0eκ0hd

3x4e−2xe−ðx2=4~q2�d2Þ

½ðxþ κedÞðxþ κhdÞ − κeκhd2e−2x�2
: ð11Þ

There are three different momenta qd, ~q�, κ0α (for calcu-
lations of asymptotes we assume that κ0e and κ0h have the
same order of magnitude) in the integral Iq, and the
characteristic momentum, transferred between electron
and hole layers, is the smallest of them. If these momenta
are well separated, the asymptotic behavior of the integral
Iq can be evaluated analytically. There are four different
regimes, I∶ ~q� ≪ qd; κ0α; IIþ∶qd ≪ ~q�; κ0α; II−∶κ0α ≪ ~q� ≪
qd; and III∶κ0α ≪ qd ≪ ~q�, with

I∶Iq ¼
ffiffiffi
π

p
2

~q4�d2

κ0eκ
0
h

; IIþ∶Iq ¼
π4

120

~q�d−1

κ0eκ
0
h

;

II−∶Iq ¼
ffiffiffi
π

p
~q2�κ0eκ0hd

4; III∶Iq ¼
~q�κ0eκ0hd

3

2
:

ð12Þ

Regimes I (T < T�
1 ) and III (T

�
2 < T) appear at small and

large temperatures. Depending on the concentration neðhÞ,
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one of II− and IIþ is between them (T�
1 < T < T�

2 ). The
corresponding boundaries are given by Tþ

2 ¼ 4πEBnαaBd,
T−
2 ¼ Tþ

1 ¼ EBðaB=dÞ2, and T−
1 ¼ EBð4πnαa2BÞ2=3. The

point at which T�
1 ¼ T�

2 and the regimes II� merge and
disappear corresponds to n12¼ aB=4πd3 ¼ 3.1×109 cm−2

and T12 ¼ EBðaB=dÞ2 ≈ 7.1 K. For the densities of
interest, the momentum scales are not well separated;
the range of the applicability of the asymptotes (12) is
reduced to T ≪ T�

1 and T ≫ T�
2 . Below, we calculate Iq

numerically.
Drag resistivity of the bilayer.—First, it is instructive

to analyze the dependence of drag resistivity ρD on the
temperature T while ignoring the presence of excitons; this
is shown in Fig. 1(b) (for matched concentrations of
electrons and holes). At high temperatures Tþ

2 ≲ T, the
screening disappears, making κ0α the smallest momentum
scale, and the drag resistivity decreases as ρD ∼ T−3=2=d.
In the intermediate regime Tþ

1 ≲ T ≲ Tþ
2 , the scattering

momentum is qd and the asymptotic form is
ρD ∼ T5=2=n2en2hd

5. These two scattering regimes are usual
for bilayer fermion systems (along with regimes where
plasmons [34,36] and phonons [37] dominate, as well as

the hydrodynamic one [38,39]), but the latter corresponds
to ρD ∼ T2 due to the degeneracy of fermions. For the
considered system, at low temperatures T ≲ Tþ

1 , the elec-
trons and holes avoid degeneracy by transforming into
excitons; their characteristic momentum scale ~q� becomes
the scattering one, leading to the asymptotic behavior
ρD ∼ T4=n2en2hd

2. That regime usually does not appear in
a fermionic bilayer due to the quantum degeneracy of
fermions.
The temperature dependence of ρD in the presence of

excitons is presented in Fig. 1(a) (perfectly matched
densities) and Fig. 3(a) (with a mismatch). The latter is
supplemented by the inset Fig. 3(b) in which the depend-
ence of ρD on the mismatch at zero temperature is depicted.
The long excitonic tail, which weakly depends on temper-
ature, considerably enhances the drag resistivity even at
high temperatures T ≫ Eexc. The dependence has a clear
minimum at the temperature TD, which lies within the
crossover Eexc ≲ TD ≲ T�

2 . The strength of the upturn is
defined by the mismatch, while the temperature TDðn0e ; n0hÞ
smoothly increases with both its arguments and does not
have any features for the matched case. This makes the
minimum in the temperature dependence of ρD shallower
with the increasing of both concentrations, as seen in the
experiment. The excitonic contribution to the drag resis-
tivity ρD can be well fitted by a combination of functions
T−1 and T−2. The former dominates at high temperatures
T ≫ Eexc, while the latter plays the major role at T ∼ Eexc.
At lower temperatures the drag resistivity saturates to a
value which depends on the imbalance of concentrations
[see Fig. 3(b)].
The resistivity of electrons is presented in Fig. 3(c) and

supplemented by the inset Fig. 3(d), where its dependence
on the mismatch at T ¼ 0 is depicted. Depending on the
mismatch, its enhancement varies by an order of magni-
tude, while the temperature dependence is quite insensitive
to it. The dependencies for the resistivity of holes are
qualitatively the same.
Discussion.—The proposed scenario of genuine exci-

tonic drag effect does not assume any phase transition and/
or coherence of excitons, which in our model may occur
at lower temperatures TQ. (Localization effects and their
interplay with other ground states, not involving exciton
condensation, cannot be ruled out: e.g., an excitonic
Bose glass [40,41] or an exotic Bose-metal phase [42],
which was conjectured to exist in models involving
dirty composite bosons and gapless fermionic excitations.)
We argue, however, that the upturn in ρD is unrelated
to the quantum effects, including localization, but appears
at the temperature TD corresponding to the ionization-
recombination excitonic crossover Eexc ≲ TD ≲ T�

2 from a
classical electron-hole plasma to a classical exciton gas.
The exact value of TD is nonuniversal and depends on
the interlayer distance, quasiparticle mobilities, effective
masses, etc.

FIG. 3. The temperature dependencies of the drag resistivity ρD
(a) and the resistivity of electrons ρe (c) in the presence of the
mismatch in electron and hole concentrations. Insets (b) and (d)
present the corresponding values at zero temperature, which are
given by Eqs. (5). The strength of the excitonic enhancement of
both ρD and ρα is defined by the mismatch, while the temperature
dependencies are quite insensitive to it.
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For explicit calculations above, we have used a range of
electron and hole concentrations, which are about an order
of magnitude smaller than the ones in the published
experiments, to ensure that the assumptions of our model
are self-consistent. In the intermediate doping regime
realized in experiment so far, the excitons overlap and
can no longer be considered as two-particle objects. To
develop a quantitative many-body theory for the Coulomb
drag effect in this intermediate regime is difficult, because
of complicated interplay of the Pauli blocking effects, self-
consistent screening, and the coexistence of excitons with a
degenerate gas of electrons and holes. The extrapolation of
our results to this regime considerably overestimates the
strength of the excitonic upturn seen in experiments.
Nevertheless, the observed behavior of the drag resistivity
on temperature and concentrations is qualitatively captured,
and we conclude that the picture of exciton formation is
more relevant to the experiments than the scenario of
electron-hole Cooper pairing and pairing fluctuations.

This work was supported by the DOE-BES (Grant
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