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The canonical understanding of quantum oscillation in metals is challenged by the observation of the de
Haas–van Alphen effect in an insulator, SmB6 [Tan et al, Science 349, 287 (2015)]. Based on a two-band
model with inverted band structure, we show that the periodically narrowing hybridization gap in magnetic
fields can induce the oscillation of low-energy density of states in the bulk, which is observable provided
that the activation energy is small and comparable to the Landau level spacing. Its temperature dependence
strongly deviates from the Lifshitz-Kosevich theory. The nontrivial band topology manifests itself as a
nonzero Berry phase in the oscillation pattern, which crosses over to a trivial Berry phase by increasing the
temperature or the magnetic field. Further predictions to experiments are also proposed.
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Introduction.—Quantum oscillation is a nontrivial mani-
festation of Landau quantization in metals [1]. In a uniform
magnetic field, an electron makes a cyclotron motion with a
conserved energy. If a constant energy surface forms a
closed orbit in the reciprocal space, the quantization
condition dictates that the area A enclosed by the orbit
satisfies,

Aℏ
e

1

B
¼ 2πðnþ γÞ; n ∈ N: ð1Þ

So the single-particle eigenstates form Landau levels (LLs).
In metals, the chemical potential intersects an energy band,
so the density of states (DOS) near the chemical potential
peaks periodically as LLs cross the chemical potential with
the variation of 1=B with the frequency given by
F ¼ AFℏ=ð2πeÞ, in which AF is the area of the Fermi
surface [see Fig. 1(a)] [2]. The DOS oscillation results in
the oscillation of various physical quantities, e.g., the
magnetic susceptibility (de Haas–van Alphen effect) and
the resistivity (Shubnikov–de Haas effect).
The constant γ in Eq. (1) is directly related to the Berry

phase ϕB the electron accumulates during a cyclotron
period, 2πðγ − 1=2Þ ¼ −ϕB [3]. γ determines the positions
of peaks and dips in the oscillation and can be extracted
with the Landau level index analysis [4–7].
This canonical understanding of quantum oscillation is

challenged by the recent observation of the de Haas–van
Alphen effect in an insulator, SmB6 [8]. SmB6 has a narrow
thermal activation gap in its bulk states, Δ≃ 40 K, even in
strong magnetic fields [8,9]. It is argued that the high-
frequency quantum oscillation originates in the bulk states,
as opposed to the topologically protected metallic surface
states [7] (however, cf. Ref. [10] for a different interpre-
tation), which is a consequence of the proposal of SmB6 as
a topological Kondo insulator [11–14]. The temperature
dependence deviates from the Lifshitz-Kosevich (LK)

theory [8]. So it is interesting to check the possibility of
the insulating bulk states displaying quantum oscillation.
Furthermore, it is desirable to find if any signature of the
nontrivial band topology arises in the quantum oscillation.
Before proceeding to a detailed study model, we first

present an intuitive argument based on the semiclassical
treatment of the Landau quantization as illustrated in Fig. 1.
In contrast to the metals, in an insulator with parabolic
bands either filled or empty, all LLs flow away from the
chemical potential as the magnetic field increases, so the
low-energy DOS [defined in Eq. (4)] decreases monoton-
ically and does not oscillate at all. However, if the insulator
has an inverted band structure as shown in Fig. 1(c), which
is modeled by the two-band Hamiltonian in Eq. (3), as the
magnetic field increases, LLs periodically approach the
band edges, i.e., the bottom of the conduction band and
the top of the valence band, resulting in periodic narrowing

FIG. 1. Illustration of LLs and possible low-energy DOS
oscillation in (a) metals, (b) parabolic band insulators, and
(c) insulators with an inverted band structure. The planes and
the thin circles denote the chemical potential and LL orbits,
respectively. The blue arrows indicate the flow of LLs with
increasing magnetic fields. The red dashed circles denote the
Fermi surface in (a) and the band edges in (c).
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of the hybridization gap and low-energy DOS oscillation.
Therefore, the band edges play a similar role as the Fermi
surface in metals and the oscillation frequency is propor-
tional to the enclosed area Aedge,

F ¼ ℏ
2πe

Aedge: ð2Þ

The oscillation is observable only if the amplitude of gap
narrowing, which is related to the LL spacing near the band
edge, is comparable to the activation gap itself. For a
narrow hybridization gap, Aedge roughly equals the Fermi
pocket area of the metal in the absence of hybridization.
This semiclassical picture will be adopted again to show
that there is a nontrivial Berry phase in the quantum
oscillation pattern as a consequence of the nontrivial band
topology. The temperature dependence of the oscillation
amplitude is found to strongly deviate from the LK theory.
Further predictions to experiments will also be discussed.
Model.—We shall study the following two-band model

in the continuum,

H ¼
X
k

ð d†k f†k Þ
 k2

2md
− μd V~k · ~σ

V~k · ~σ − k2
2mf

− μf

!�
dk
fk

�
; ð3Þ

in which dk ¼ ðdk↑; dk↓ÞT and fk ¼ ðfk↑; fk↓ÞT are d- and
f-band electrons with pseudospin 1=2. ~σ are the Pauli
matrices acting on the pseudospin space. If δμ≡ μd−
μf > 0, the model has an inverted band structure.
The electronlike d band and the holelike f band are

hybridized by the parity-odd V~k · ~σ term and open a finite
gap. If the chemical potential lies within the gap, this model
describes topological insulators in two and three dimen-
sions [15–20].
There are four bands in SmB6 with pseudospin- 1=2 near

the chemical potential and the band inversion happens
around the three X points [13,14,21]. Equation (3) can be
taken as a simplified two-band k · p model expanded
around one X point [21,22]. We adopt the following band
parameters derived from a tight-binding model [23]
throughout this work unless specified otherwise,
md ¼ ℏ2=2ta20, α≡md=mf ¼ 0.1, δμ ¼ 0.5t. The d-band
hopping amplitude t is set to be unity. Aweak hybridization
V=a0 ¼ 0.015t leads to a narrow gap Δg ¼ 0.012t.
Substituting t≃ 640 meV estimated from the calculated
SmB6 band structure [21], one finds Δg ¼ 7.7 meV, which
roughly equals two times of the 40 K activation energy.
Therefore, our model captures the main features of the
SmB6 band structure. The strongest magnetic field in
experiments ∼50 T corresponding to 1=500 flux quanta
per unit cell is covered in our calculations. The Zeemann
effect estimated in experiments is quite weak [8,9] and does
not qualitatively change our results, so will be neglected in
our presentation.

The possible quantum oscillation from the bulk states is
characterized by the low-energy DOS (LEDOS) near the
chemical potential, defined as the broadened DOS at
temperature T,

DT ¼
Z þ∞

−∞
dξ

∂nFðξ − μ; TÞ
∂μ DðξÞ ¼

X
i

∂nFðϵi − μ; TÞ
∂μ ;

ð4Þ

in which DðξÞ is the single-particle DOS. The summation
on the right-hand side of Eq. (4) is taken over the single-
particle energy spectrum. LEDOS is related to various
physical quantities at finite temperature, e.g., the Pauli
susceptibility, the compressibility and the resistivity, and its
oscillation necessarily results in the oscillation of these
quantities. Besides, an advantage in calculating LEDOS is
that it does not require any regularization procedure. In
contrast, the free energy is (formally) divergent due to the
holelike f band. Upon regularization, a cutoff at some
negative energy may play a similar role as the Fermi surface
in metals and result in artificial oscillation, which is
avoided in the LEDOS calculations.
2D semimetal.—If the hybridization is turned off, V ¼ 0,

the chemical potential lies exactly where the d and f bands
intersect, forming electronlike and holelike Fermi pockets
with equal size [Fig. 2(a)]. In magnetic fields, these bands
form two sets of LLs,

ϵdn ¼
eBℏ
md

�
nþ 1

2

�
− μd; ϵfn ¼ −

eBℏ
mf

�
nþ 1

2

�
− μf;

n ∈ N: ð5Þ

LLs cross the Fermi surface periodically and result in the
LEDOS oscillation as shown in Figs. 2(b) and 2(c).
The temperature dependence of the oscillation amplitude

has an unusual two-plateau feature [Fig. 2(d)], which
resembles that found in SmB6 [8]. The reason is that both
Fermi pockets contribute to the LEDOS oscillation with
equal frequency. At finite temperature, the contribution
from each band is captured by the LK theory, so the total
oscillation amplitude is described by the two-component
LK formula,

RT ¼ cd
χd

sinh χd
þ cf

χf
sinh χf

; ð6Þ

in which χd;f ¼ 2π2md;fT=eBℏ, cd;f ∝ md;f. The oscilla-
tion amplitudes are extracted as the heights of the dominant
Fourier peaks, which are fitted perfectly by Eq. (6) [23].
2D topological insulator.—In a magnetic field, the V~k ·

~σ term is replaced by Vð~k − e~A=ℏÞ · ~σ, which hybridizes
different LLs. In two dimensions, the Hamiltonian is
decoupled into two sectors, the d↑ − f↓ (↑↓) sector and
the d↓ − f↑ (↓↑) sector. Within each sector, the LLs are
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hybridized obliquely; i.e., the nth d↑ LL is hybridized with
the (n − 1)th f↓ LL, while the (n − 1)th d↓ LL with the nth
f↑ LL, forming the following spectrum,

ϵ↑↓n� ¼ 1

2

�
ϵdn þ ϵfn−1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵdn − ϵfn−1Þ2 þ 8nV2eB=ℏ

q �
; ð7Þ

ϵ↓↑n� ¼ 1

2

�
ϵdn−1 þ ϵfn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵdn−1 − ϵfnÞ2 þ 8nV2eB=ℏ

q �
; ð8Þ

for n ≥ 1. The d↑ and f↑ LLs with index n ¼ 0 are
unaffected.
Let us start from the semimetal without hybridization

and dub the highest occupied d-LL index N,
N ¼ ⌊δμ=ℏω�

c − 1=2⌋, with ω�
c ≡ eBℏðmd þmfÞ=mdmf.

The highest unoccupied f-LL index is also N. As the
hybridization is turned on, all LLs are pushed away from
the chemical potential, except one pair in each sector, the
(N þ 1)th d↑ LL and the Nth f↓ LL, and theNth d↓ LL and
the (N þ 1)th f↑ LL, as illustrated in Fig. 3. One LL out of
each pair is pushed toward the chemical potential. In weak
magnetic fields, the level repulsion overcomes the small LL
spacing and these two LLs pass each other, leaving a
hybridization gap. If the hybridization is perturbatively
small in strong magnetic fields, the LLs do not pass each
other, so the spectrum near the chemical potential is largely
unaffected and remains metallic. Therefore, the magnetic
field induces a gap-closing transition from a topological
insulator to a metal [23].
The energy spectrum in magnetic fields is plotted in

Fig. 4(a). The hybridization gap is closed above a critical
field Bc. For B > Bc, the low energy spectrum is nearly the

same as the unhybridized case, resulting in similar LEDOS
oscillation. The temperature dependence is captured by the
two-component LK formula, as shown in Fig. 4(c).
For B < Bc, a close inspection on the LL spectrum finds

periodic gap narrowing as expected from the semiclassical
argument, which leads to the smooth oscillation of LEDOS.
However, we find various peculiarities detailed below.
The oscillation amplitude has a nonmonotonic temper-

ature dependence in sharp contrast to the LK theory. At
low temperature, the amplitude has a broad hump, which
is a consequence of the activation gap Δ. For T ≪ Δ,
the oscillation amplitude is captured by the asymptotic
formula [23],

FIG. 2. (a) Band structure, (b) LL spectrum, and (c) LEDOS
oscillation of the semimetal in two dimensions. The dashed gray
lines in (b) and (c) indicate whenever Eq. (1) is satisfied at the
chemical potential with γ ¼ 1=2. (d) The temperature depend-
ence of the oscillation amplitude (black dots) and the fitting by
the two-component LK formula (dashed blue curve). Band
structure parameters are specified in the main text with t set to
be unity. The abscissas in (b) and (c) are labeled with the inverse
number of flux quanta per unit cell.

FIG. 3. Illustration of the LL hybridization in two dimensions.
In each sector, each d LL hybridizes with an f LL drawn in the
same dashing style. LLs in red are pushed upward while the blue
downward. The long gray bars denote the chemical potential. All
LLs shift away from it except that in the fN;N þ 1g LL pairs
(solid bars), one LL out of each pair shifts toward it and may pass
each other.

FIG. 4. (a) LL spectrum and (b) LEDOS oscillation of the 2D
model with a hybridization gap. The thick vertical lines indicate
Bc, the critical field of gap closing. The inset of (b) highlights the
phase jump at finite temperature. The LEDOS are plotted at
temperatures indicated by the vertical lines in (c). (c) Temperature
dependence of the oscillation amplitudes extracted in B > Bc
(open circles) and B < Bc (closed circles, multiplied by 10 for
clarity). (d) Intensity plot of LEDOS, highlighting the π phase
jump around B≃ Bc and T ≃ Δ, which are indicated by the
dashed curves.
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RT ∼ T−1=2e−Δ=T−bT; ð9Þ
in which the e−Δ=T factor comes from the thermal activation
while the e−bT factor reflects the thermal smearing similar
to the LK theory.
Around T ≃ Δ, the amplitude dips to zero, which

coincides with a π phase jump in the oscillation pattern,
as highlighted in the inset of Fig. 4(b). Furthermore, at low
temperature, there is another (approximate to) π phase jump
around Bc, while the high-temperature oscillation varies
smoothly across Bc without any phase change as shown in
Fig. 4(d). Therefore, the Berry phase changes by π in both
circumstances.
The phase jump across Bc is actually implied by the LL

spectrum, in which the periodic gap narrowing forB < Bc is
replaced by periodic widening for B > Bc due to the gap
closing, and the LEDOS peaks are replaced by dips corre-
spondingly. Moreover, the nonzero Berry phase for B < Bc
turns out to be a manifestation of the oblique hybridization.
Let us turn back to the semiclassical picture and focus on one
LL in the d↓ − f↑ sector with energy ϵ

↓↑
nþ, which comes from

the hybridization between the (n − 1)th d↓ LL and the nth f↑
LL. As it flows from the f-band top downward to the
conduction band bottom and upward again along the d band
with increasingB, the total phase in Eq. (1) changes by−2π,
implying that the Berry phase near the band bottom is
approximate to π, consistent with the LEDOS oscillation
pattern at low temperature. At high temperature, T > Δ, LLs
with trivial Berry phase dominate over those near the band
edges, leading to the crossover of the oscillation phase.
Quantum oscillation in three dimensions.—The two-

band model Eq. (3) is easily generalized to three dimen-

sions with the z components included in ~k and ~σ. The
LEDOS oscillation shown in Fig. 5 is qualitatively similar
to the 2D case with minor modifications.
First, in the oscillation frequency formula Eq. (2), Aedge

should be understood as the area enclosed by the extremum
orbit on the band edges. For weak hybridization, it roughly
equals that of the Fermi surface in the absence of
hybridization.
Second, the kzσz term introduces further hybridization

between the nth d↑ (d↓) LL and the nth f↑ (f↓) LL and
opens a gap in the B > Bc regime for nonzero kz (Bc is
defined as the gap-closing field for kz ¼ 0), resulting in a
persistent gap in DOS as shown in Fig. 5(a). As a result, the
LEDOS oscillation in the B > Bc regime also shows
thermal activation behavior at low temperature, which is
captured by an asymptotic formula similar to Eq. (9),
RT ∼ e−Δ

0=T−bT . Because of the gap nodes at kz ¼ 0 at
particular field strengths, Δ0 is much smaller than the gap
away from these fields. So the temperature with the
maximum oscillation amplitude Tmax should be much
lower than the activation energy measured with resistivity.
Otherwise the LEDOS oscillation in three dimensions

carries all essential features as in the 2D case. For B > Bc,

the temperature dependence is captured by the two-
component LK formula for T > Tmax. For B < Bc, the
nontrivial Berry phase shows up, which crosses over to the
trivial Berry phase at high temperature or high magnetic
fields.
Summary and discussion.—To summarize, we find that

an insulator with inverted bands can show quantum
oscillation in its bulk low-energy DOS due to the periodic
gap narrowing in magnetic fields. The oscillation frequency
is proportional to the area enclosed by the extremum orbit
on the band edge. For a topological insulator, the nontrivial
band topology manifests itself as a nonzero Berry phase in
the oscillation. The temperature dependence deviates from
the LK theory and shows thermal activation behavior at low
temperature in particular. These features are also repro-
duced by a tight-binding model on the lattice [23].
In a recent publication [27], the authors found quantum

oscillation in a similar two-band model. The oscillation
frequency is consistent with our result. However, the
hybridization term in their work is parity even, so the
hybridization gap is topologically trivial. The nonzero
Berry phase and the bulk gap closing at Bc found in our
work are missing.
Several features can be tested in experiments. First is the

sizable periodic gap narrowing in magnetic fields that
causes the LEDOS oscillation, which can be extracted
from the resistivity or with infrared spectroscopy. Second is
the thermal activation behavior, i.e., the decreasing oscil-
lation amplitude at temperatures much lower than the
activation energy. Third is the nonzero Berry phase.
Even if it is difficult to extract the Berry phase directly
[6], it is possible to observe a π phase jump at the
boundaries sketched in Fig. 5(d).

FIG. 5. (a) Single-particle DOS of the 3D model and
(b) LEDOS oscillation. The thick vertical line indicates Bc.
The LEDOS are plotted at temperatures indicated by the vertical
lines in (c). (c) Temperature dependence of the oscillation
amplitudes for B > Bc (open circles) and B < Bc (closed circles,
multiplied by 20 for clarity). (d) Schematic illustration of Berry
phases in different regimes.
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Note added.—Upon completion of this work, we became
aware of Ref. [10], in which a different scenario for the
quantum oscillation in SmB6 was suggested.
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