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We consider a zigzag chain of coupled micropillar cavities, taking into account the polarization of
polariton states. We show that the TE-TM splitting of photonic cavity modes yields topologically protected
polariton edge states. During the strongly nonadiabatic process of polariton condensation, the Kibble-
Zurek mechanism leads to a random choice of polarization, equivalent to the dimerization of polymer
chains. We show that dark-bright solitons appear as domain walls between polarization domains, analogous
to the Su-Schrieffer-Heeger solitons in polymers. The soliton density scales as a power law with respect to
the quenching parameter.
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As initially shown by Kibble [1] for the expansion and
cooling of the early Universe, and then for liquid helium by
Zurek [2], a system undergoing a second-order phase
transition on a finite time scale develops domains with
independent order parameters. The Kibble-Zurek mecha-
nism (KZM) allows us to predict the typical size of the
domains and, therefore, the densities of the topological
defects on their boundaries. Their scaling as a function of
the quench rate is given by a power law, with the critical
exponent of the transition being determined by its univer-
sality class [3].
A very relevant system to study the KZM involves the

quantum fluids such as atomic Bose-Einstein condensates
(BECs) formed by cooling. Indeed, quantum fluids support
topological defects [4,5], their most famous example being
a quantum vortex, which, contrary to a classical vortex, like
a tornado, cannot disappear “by itself” via a continuous
transformation. This property is due to the difference in
vortex and ground state topologies, which is guaranteed by
the irrotational nature of the fluid described by a complex
wave function [6]. The nonadiabatic cooling of such a fluid
allows the development of topological defects obeying the
KZM scaling, as confirmed by experiments [7] and also
predicted for multicomponent BECs [8,9]. However, sol-
itons in 1D and half vortices in 2D spinor BECs [4,5,10] are
only quasitopological defects. Indeed, a dark soliton trans-
forms into a grey one and eventually disappears by simple
acceleration, and a half vortex can be unwound by a
divergent magnetic field. Another system of interest for
studying the KZM involves cavity exciton-polariton quan-
tum fluids [11,12]. Because of the finite polariton lifetime,
polariton condensation can be an out-of-equilibrium proc-
ess driven by the condensation kinetics rather than by
thermodynamics [12,13]. As previously pointed out
[14,15], the establishment of a steady state by nonresonant
pumping in an initially empty system cannot be an

adiabatic process and is therefore equivalent to a quenching
of the parameters of the system, leading to the appearance
of topological defects.
Another class of systems which possess topologically

protected states includes periodic lattices with topologically
nontrivial band structures characterized by nonzero Chern
numbers, or the Zak phase, depending on their dimension-
ality. The most well-known examples of such systems are
the topological insulators [16], Kitaev chains supporting
topologically protected Majorana states [17] and dimer
chains [18]. Indeed, depending on the difference of the
tunneling coefficients within and between the dimers, such
chains form topologically different conduction bands,
characterized by a π difference in the Zak phase [19].
As was shown recently [20], the number of states in the
conduction band depends on this phase, and the states
which are not included in the bulk are localized on the
edges. These edge states do not rely on interparticle
interactions but are topologically protected: they are robust
against disorder and perturbations. Different implementa-
tions of topologically nontrivial band structures have been
studied theoretically and experimentally in various systems,
including photonics [21,22], optomechanics [23,24], exci-
tons [25], and plasmonic zigzag chains [26–29]. Optical
systems offer an important advantage compared to the
electronic ones and to atomic BECs because of the facility
of their fabrication and the complete accessibility of the
wave function in time and real and reciprocal space.
Polaritonic systems were shaped as molecules and lattices
[30–32]. Schemes for creating polariton topological insula-
tors have been proposed [33–36]. While KZM, as a
universal mechanism, has already been widely studied in
various systems sharing some common properties with our
proposal, such as zigzag ionic chains [37–40], where the
phase transition and the topology correspond to the
physical arrangement of atoms, none of these possess
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the same key ingredients. A topologically nontrivial polari-
tonic chain therefore appears as an ideal system for
studying the complex interplay of topological ordering
and KZM [41].
In this Letter, we describe a polariton BEC in a zigzag

chain of polariton micropillars with photonic spin-orbit
coupling (SOC) [34,42,43]. As a result, the polariton band
is characterized by a nonzero Zak phase and the chain
supports topologically protected edge states. These results
are also valid for Rashba SOC present in atomic con-
densates [44]. We show that with a focused nonresonant
excitation spot, condensation occurs on the edge states,
with polarization determined by the Zak phase. When the
system is excited homogeneously, a gas of dark-bright
solitons [a spinor version of Su-Schrieffer-Heeger (SSH)
solitons] is formed via the KZM. Here, the k2 TE-TM SOC
is crucial, allowing a homogeneous condensate, contrary to
k-linear Rashba SOC. We demonstrate that the soliton
density follows a power law with respect to the quenching
parameter—pumping intensity. The scaling exponent for
different system parameters is close to 1=4, in agreement
with the mean-field KZM theory for a 1D system.
Existence of topological edge states.—We first consider

a zigzag chain of coupled 0D modes neglecting the spin, as
is usually done in a theoretical analysis of the electronic
dimer chains. Let us call the first pillar in the chain a, and
let it be “below” the second pillar b so that the first link is
oriented at 45° (see Fig. 1), which we will call the
“diagonal” direction (D), while the perpendicular direction
shall be “antidiagonal” (A, 135°). The pair ab forms the
unit cell. Following the definitions established in previous
works [20], the tunneling constant in the first link (within
the cell) is called t0, while the tunneling in the second link

(between cells) is t. The corresponding tight-binding
Hamiltonian reads (m is the cell number)

Ĥ ¼
X
m

t0b̂†mâm þ tâ†mþ1b̂m þ H:c:; ð1Þ

where â and b̂ operators act on the corresponding pillars.
Let us now consider that these 0D modes are constituted

by photonic micropillars obtained by etching a planar
cavity [45]. Each pillar ground state has two polarizations,
which we assume to be degenerate. On the other hand, the
optical eigenmodes of the cavity are TE and TM polarized
and have different effective masses [46]. This makes the
tunneling coefficients polarization dependent [34,42,43]
and different for the polarizations oriented longitudinally
and transversely with respect to the link. We therefore have
t < t0 forD polarization, for which the first link (labeled by
t0) is longitudinal [see Figs. 1(a) and 1(d)], and t > t0 for the
A polarization, for which the same link is transverse [see
Figs. 1(b) and 1(e)]. The relative difference in the longi-
tudinal and transverse tunneling coefficients for typical
parameters of a polariton micropillar lattice can be on the
order of 10% [34]. This difference of the tunneling
coefficients is equivalent to the dimerization of polymer
chains but associated with the polarization of the states. The
corresponding dimers are shown with black dashed lines
in Fig. 1.
For an even number of pillars, one can directly apply the

SSH theory developed for polymer chains [18]. The
dispersion of such a system contains two conduction bands,
below and above the single-pillar energy, chosen as the zero
reference. The existence of the edge state in this case is
determined by the Zak phase, which is an analog of
the Berry phase [47] defined on a unit cell of a size d
for a Wannier function unkðxÞ, integrated over a given band
n [19]:

ζn ¼
Z

π=d

−π=d

2π

d

Z
d

0

u�nkðxÞi
∂unkðxÞ

∂k dxdk: ð2Þ

The Zak phase is determined by the ratio of the tunneling
coefficients within and between the dimers [20]: ζn ¼ 0 if
t0=t > 1, and ζn ¼ π if t0=t < 1. The topological transition
ζn ¼ 0↔ζn ¼ π occurs at t ¼ t0. If the Zak phase is π, the
number of states in the bulk is less than the number of
pillars:N ¼ M − 2, and the remaining states, whose energy
is that of uncoupled modes, are localized on the edges of
the chain. If the Zak phase ζn ¼ 0, the number of states in
the bulk is equal to the number of pillars N ¼ M, and no
edge states appear. The advantage of the optical systems is
that the Zak phase can be measured directly [27].
In our system, as can be deduced from Figs. 1(a) and

1(b), a pair of edge states does exist in one polarization
(antidiagonal for our parameters), and does not exist in the
other. The result of the diagonalization of the Hamiltonian

t' t

a

b

a

(a)
t' t

a

b

a

(d)

t'
t

b

a a

(b)

t'
t

b

a a

(e)

(f)(c)

FIG. 1. A scheme of a zigzag chain with even and odd numbers
of polariton pillars: a and b form a unit cell marked in dark grey.
(a),(d) Diagonal polarization, t0 > t. (b),(e) Antidiagonal polari-
zation, t0 < t. (c),(f) Energy band of 30 (c) and 31 (f) pillar chains
obtained from the tight-binding Hamiltonian. The color shows
the diagonal polarization degree of the states.
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(1) with spin (see Ref. [48]) for a chain of 30 pillars
(δJ ¼ 0.3J for visibility) is shown in Fig. 1(c), with
polarization shown in color. We see that the polarization
states are interleaved, the lower band ends with polarization
D, and the upper band begins with D, so the edge states
(seen in the gap) are both necessarily A polarized. Rashba
SOC gives a similar result. For an odd number of pillars, if
t=t0 ≠ 1, one can redefine a dimer so that the Zak phase
will be π and a state will appear on the edge which contains
a unit cell broken by the boundary. For polaritons, an
important consequence is that for one polarization (D),
the edge state is on the right edge of the chain [see
Fig. 1(d)], and for the other polarization (A) the edge state
is on the left edge of the chain [see Fig. 1(e)]. Calculation
yields Fig. 1(f), where for all states, including the edge
ones, the polarization is interleaved.
Overall, whatever the number of pillars in a finite zigzag

chain, because of the polariton SOC there are always two
edge states in the system, either having the same polari-
zation when the number of pillars is even or being cross
polarized when the number of pillars is odd. The edge state
polarization is always orthogonal to the axis linking the two
last pillars at the chain edge.
We confirm the predictions of the analytical tight-

binding model by solving numerically the spinor
Schrödinger equation on a grid to find the eigenstates:

Eψ� ¼ −
ℏ2

2m
Δψ� þ β

� ∂
∂x∓i

∂
∂y

�
2

ψ∓ þ Uψ�; ð3Þ

where ψðr; tÞ ¼ (ψþðr; tÞ;ψ−ðr; tÞ)T are the two circular
components of the wave function, β ¼ ℏ2ðm−1

l −
m−1

t Þ=4m, while ml;t are the effective masses of TM and
TE polarized particles, respectively, and m ¼ 2ðmt −mlÞ=
mtml; mt ¼ 5 × 10−5m0, ml ¼ 0.95mt; m0 is the free
electron mass; and UðrÞ is the potential of the pillars
describing the confinement of polaritons in the chain
beyond the tight-binding model [34]. The results of these
calculations are presented in Fig. 2, showing the spatial
images of the difference between the diagonal polarizations
ID − IA for both an even [Fig. 2(a)] and an odd [Fig. 2(b)]
number of pillars. The localization length is discussed in
the Supplemental Material [48].
Condensation on localized edge states.—Avery effective

way to excite these localized edge states is to create
a polariton condensate using focused nonresonant pump-
ing. This technique allows creation of strongly out-of-
equilibrium states, typically the states showing the best
spatial overlap with the localized excitonic reservoir
induced by the pump [32,49,50]. In lattices, the repulsive
potential induced by the excitonic reservoir becomes
attractive for particles with a negative effective mass at
the band edges, which leads to the condensation on
localized gap states bound to the reservoir [32,50]. One
expected peculiarity of the zigzag chain with a local pump

is that the polarization of the localized mode where the
condensation occurs is entirely fixed by the chain topology
and the position of the pump, and it does not rely on a
symmetry breaking process. To demonstrate this predicted
feature, we model polariton condensation using the hybrid
Boltzmann–Gross-Pitaevskii equation, which includes
relaxation mechanisms [32,51,52]. For a thermal excitonic
reservoir, the model can be reduced to

iℏ
∂ψ�
∂t ¼−ð1− iΛÞ ℏ

2

2m
Δψ�þβ

� ∂
∂x∓i

∂
∂y

�
2

ψ∓þUψ�

−
iℏ
2τ

ψ�þf½URþ iγðnÞ�ψ�þχgexp
�
−
ðr−r0Þ2

σ2

�
;

ð4Þ

where the parameters (values from Ref. [32]) other than in
Eq. (3) are as follows: Λ, the kinetic energy relaxation term;
UR, the reservoir potential amplitude; σ, the reservoir
width; τ, the lifetime; χ, the Gaussian noise term included
to describe the spontaneous scattering [53,54]; γðnÞ, the
saturated stimulated scattering rate from the reservoir; and
n, the total polariton density. We neglect the interactions
within the condensate here. A pump located close to the
edge will excite the unique localized mode at the edge of
the chain. If the pumping spot is located in the bulk, the
potential of the reservoir cuts the lattice into two smaller
chains, and the same reasoning as above applies to each of
them, leading to the condensation at their respective edge
states. The results of the simulations for the pumping
spot located in the middle of a chain (which allows us to
check all predictions simultaneously) are presented in
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FIG. 2. Calculated spatial images of the difference in diagonal
polarization emission ID − IA. (a) Edge states in a chain with an
even number of pillars. (b) Edge states in a chain with an odd
number of pillars. (c) Emission of the condensed states under
localized pumping (marked P). Opposite diagonal polarization is
observed on opposite sides.
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Fig. 2(c), showing the difference between the intensities of
the diagonal polarizations ID − IA of the light emitted from
the system above the condensation threshold. The con-
densation indeed occurs on the localized edge states on
both sides of the spot, with polarization controlled by the
condition on the Zak phase ζn ¼ π.
Spontaneous formation of dark-bright solitons via the

Kibble-Zurek mechanism.—The consequences of the non-
trivial topology of the system are truly revealed under
homogeneous nonresonant pumping. While the previous
results could be verified by purely linear measurements
[27], in this section we study the condensation of polar-
itons, accompanied by the emergence of a spinor order
parameter. As any second-order phase transition occurring
on a finite time scale, it is described in terms of parameter
quenching, responsible for the KZM-type formation of
topological defects [1,2,7]. In a spinor system, the large
phase fluctuations at the early stage of a condensation
process are associated with spatial fluctuations of the
polarization, governed by the phase difference between
the spin components. The polarization domains correspond
to the dimerization domains in the SSH picture, and the
domain wall between them is equivalent to the SSH soliton
[18]. These dark-bright solitons separate two polarization
domains, both equally stable and characterized by a fixed
difference π in their Zak phase. The stability of a dark-
bright soliton, which cannot be destroyed by acceleration,
is its most important feature: once formed, it does not
disappear, contrary to a scalar dark or grey soliton. This
stability requires the interactions in the condensate to be
smaller than the TE-TM splitting [48]. It allows us to detect
such objects in cw experiments, being advantageous with
respect to the previous proposals of the KZM studies with
polaritons [14,15], requiring single-pulse experiments.

Figure 3 shows the results of simulations based on the
numerical solution of Eq. (4) with a homogeneous res-
ervoir potential (σ ¼ ∞) and interactions [48]. Figures 3(a)
and 3(b) show the difference between the intensities of the
diagonal polarizations ID − IA of the light emitted by a
condensate formed under weak and strong pumping,
respectively. In Fig. 3(a), two domains A and D polarized
corresponding to a single dark-bright soliton are visible.
Figure 3(b) shows six polarization domains and five
domain walls (for a movie, see the Supplemental
Material [48]). In our numerical experiment, we do not
change the temperature of the system, as in the classical
KZM, but rather turn on the pumping and fill the system
with particles, changing the critical condensation temper-
ature, but keeping the system temperature (controlled by χ
and Λ) constant. The quenching time is controlled by the
pumping intensity τ−1Q ∝ P. This scheme, while being
simpler and ubiquitously present in all polariton experi-
ments, fits the KZM scheme because the relative temper-
ature ϵ ¼ ðT − TcÞ=Tc at threshold changes linearly with
time (see the Supplemental Material [48]).
Indeed, the Gaussian noise χ is uncorrelated in time and

thus creates a frequency-independent population of par-
ticles. However, the energy relaxation term proportional to
Λ describes energy-dependent decay acting on these
particles. The resulting spectral density jψðEÞj2 for the
polariton state of energy E can be obtained as
jψðEÞj2 ∝ χ=Γ, where Γ is the total decay rate, composed
of energy-independent Γ0 (ground state lifetime) and
energy-dependent relaxation ΓΛ ¼ ΛE [51], giving

jψðEÞj2 ∝ χ

Γ0 þ ΛE
≈

χ

Γ0

�
1 −

ΛE
Γ0

�
: ð5Þ

The linear part of the spectrum at low energies can be
interpreted as a Boltzmann distribution function with an
effective temperature T ¼ Γ0=Λ. Varying the relaxation
efficiency, we can change this effective temperature: the
better the relaxation, the lower the temperature. According
to KZM, the average density of the topological defects nsol
in a BEC scales as the inverse healing length ξ−1 ¼ ξ−10 jϵjν,
where ν is a scaling exponent. In the mean-field approxi-
mation, ν ¼ 1=2 (because ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2αnm

p
, where α is

the interaction constant), and the dynamical exponent is
z ¼ 2 [3,8] for relaxation linear in energy, which allows
us to write nsol ¼ ξ−10 ðτ0=τQÞν=ð1þzνÞ ∝ ðτ0=τQÞ1=4. Thus,
nsol ∝ τ−1=4Q ∝ γ1=4: a scaling exponent of 1=4 is expected
for the mean-field universality class. Figure 3(c) shows the
number of solitons appearing in a chain of 40 pillars versus
the effective pumping intensity ðγ − ΓeffÞ=Γ0, where Γeff ≈
5.5Γ0 is the effective decay rate accounting for Λ. Each
point is obtained as an average of ten simulations. The
power law fit is compatible with the scaling exponent 1=4
expected for KZM.

(c)

FIG. 3. (a),(b) Difference in diagonal polarization intensities for
two examples of polarization textures in a zigzag chain. Colors
are as in Fig. 2. (c) Average number of solitons as a function of
effective pumping fitted by a power law.
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To conclude, we have demonstrated that the Zak phase
plays a crucial role for the description of condensation in
1D zigzag chains of polariton pillars. Because of the SOC,
such chains always exhibit exponentially localized edge
states. Similar results can be obtained for Rashba or
Dresselhaus SOC in atomic BECs. Under homogeneous
pumping, dark-bright solitons appear between the domains
of orthogonal polarization via the Kibble-Zurek mecha-
nism. We extract numerically the dependence of the soliton
density against the quenching parameters and find it in
agreement with the analytical predictions. These domain
walls can also be created by quasiresonant excitation, for
example, using Gauss-Laguerre beams focused on a pillar
chain (above the bistability threshold) [55]. They can also
be manipulated using the electrically controlled in-plane
effective magnetic fields [56], which might allow us to
design optical racetrack memories [57].

We acknowledge our discussions with M. Glazov, A.
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(289968) and ANR Labex GANEX (207681).
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