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The global phase diagram of wetting in the two-dimensional Ising model is obtained through the exact
calculation of the surface excess free energy. In addition to a surface field for inducing wetting, a surface-
coupling enhancement is also included. The wetting transition (of second order) is critical for any finite
ratio of surface coupling Js to bulk coupling J, and becomes of first order in the limit Js=J → ∞. However,
for Js=J ≫ 1, the critical region is exponentially small and is practically invisible to numerical studies. A
distinct preasymptotic regime exists in which the transition displays first-order character. In this regime,
surprisingly, the surface susceptibility and surface specific heat develop a divergence and show anomalous
scaling with an exponent equal to 3=2.
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When a surface is exposed to an adsorbate at two-phase
coexistence, either droplets (partial wetting, or “nonwet”) or a
uniform layer (complete wetting, or “wet”) of one of the
phases may form on it. Delicate tuning of surface or bulk
propertiesmay allowone to achieve a surface phase transition
or critical phenomenon from partial to completewetting. The
so-called wetting transition has been studied experimentally
and theoretically for some35years now; for reviews, see, e.g.,
[1–5]. The first exact solution beyond mean-field theory
revealed a critical wetting transition (of second order) in the
2D Ising model with a surface field [6,7]. When antiferro-
magnetic surface couplings are added, critical wetting per-
sists [8]. However, for strong ferromagnetic surface
couplings, new physics arises, as we show in this Letter.
Monte Carlo simulations of wetting in the 3D Ising

model with a surface field and a surface-coupling enhance-
ment have unveiled a rich global phase diagram, featuring
first-order and critical wetting separated by tricritical
wetting [9], in accord with qualitative predictions from
Landau theory [10]. However, in two dimensions (d ¼ 2),
where thermal fluctuation effects on wetting are pro-
nounced, only critical wetting transitions belonging to a
single universality class are expected [2,11,12].
Nevertheless, an exact calculation revealed that first-order
wetting is possible when an extra defect line is introduced
[13]. Furthermore, numerical evidence for first-order wet-
ting was found in Monte Carlo simulations of the 2D Ising
model with an extra spin state (a vacancy) [14–16].
We investigate the global phase diagram for wetting in

d ¼ 2 for short-range forces and answer the following
fundamental questions. Is first-order wetting possible in
d ¼ 2 for the standard spin-1=2 Ising model with a surface,
by enhancing the spin-spin coupling at the surface? What is
the precise character of the wetting transition in d ¼ 2; in

particular, how wide is the critical region and are there
distinct preasymptotic regimes?
Consider a set of Ising spins σðn;mÞ ¼ �1 located at

points ðn;mÞ of the planar square lattice Λðn;mÞ such that
1 ≤ n ≤ N, 1 ≤ m ≤ M. The energy of a configuration fσg
of spins is given by

EðfσgÞ¼−
XM
m¼1

fH1ðmÞσð1;mÞþHNðmÞσðN;mÞg

−
XM
m¼1

J0σð1;mÞσð2;mÞ−
XM
m¼1

Jsσð2;mÞσð2;mþ1Þ

−
XM
m¼1

XN−1

n¼2

J1σðn;mÞσðnþ1;mÞ

−
XM
m¼1

XN−1

n¼3

J2σðn;mÞσðn;mþ1Þ: ð1Þ

The fields H1ðmÞ and HNðmÞ allow us to fix boundary
spins. The spin-spin coupling J0 (> 0) acts as an effective
surface field on the first layer (n ¼ 2) of free spins; this is
the usual wetting term, which for mixtures corresponds to a
differential surface fugacity. We denote by h1 ≡ βJ0 the
absolute value of the (reduced) surface field, where
β ¼ 1=kBT, with kB the Boltzmann constant and T the
absolute temperature. Modified spin-spin couplings Js
along the surface take into account the changed environ-
ment of molecular interactions at the surface in such a way
that exact solution is still possible. J1 and J2 are the usual
(ferromagnetic) “bulk” nearest-neighbor couplings.
Periodic boundary conditions σðn;M þ 1Þ ¼ σðn; 1Þ,
which we impose, are essential to generate exact solutions.
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The normalized canonical probability is PðfσgÞ ¼
Z−1 exp½−βE�, where Z is the partition function.
We will make use of two types of “wall” boundary

conditions, as follows:

A∶ H1ðmÞ; HNðmÞ ¼ þ∞; for 1 ≤ m ≤ M; ð2Þ
which, for T ≤ Tc, with Tc the bulk critical temperature,
force a statewith positive spontaneous bulkmagnetization in
the thermodynamic limitM → ∞ followed by N → ∞, and

B∶H1ðmÞ ¼
�−∞; for 1 ≤ m ≤ S

þ∞; for S < m ≤ M;

HNðmÞ ¼ þ∞; for 1 ≤ m ≤ M; ð3Þ

which force a long contour of surface length S, beginning at
ð1; 1

2
Þ and ending at ð1; Sþ 1

2
Þ, which delimits the region of

predominantly negative magnetization.
The surface excess free energy f (per unit length of

surface, S) can be obtained from

βf ¼ − lim
S→∞

lim
Λ→∞

1

S
ln
ZB

ZA
; ð4Þ

where partition functions ZA and ZB correspond to the
respective boundary conditions. In the language of wetting
phenomena, this definition ensures that f equals γþ− cos θY
in the nonwet state and γþ− in the wet state (θY ¼ 0), where
θY is Young’s contact angle and γþ− is the surface tension
of a free interface between þ and − phases in bulk. We
obtain the analytic form

ZB

ZA
¼ i
2π

Z
2π

0

dωeiSω tanδ�ðω=2Þ ðe
γðωÞ−QþÞðeγðωÞ−Q−Þ

ðeγðωÞ −PþÞðeγðωÞ−P−Þ
;

ð5Þ

where γðωÞ, δ�ðωÞ are elements of the Onsager hyperbolic
triangle,

cosh γðωÞ ¼ cosh 2K�
1 cosh 2K2 − 2 sinh 2K�

1 sinhK2 cosω

ð6Þ
and

cosh 2K�
1 ¼ cosh 2K2 cosh γðωÞ

− sinhK2 sinh γðωÞ cos δ�ðωÞ; ð7Þ
with Ki ≡ βJi, and with dual couplings K�

i satisfying
tanhK�

i ¼ e−2Ki for i ¼ 1, 2. The quantities P� and Q�
are real valued and independent of ω.
The integrand is singular at values of ω for which

eγðωÞ ¼ P�. The results for P� are

P� ¼ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − r2 þ 1

p

rþ 1
; ð8Þ

where, defining 2K0
2 ≡ 4Ks − 2K2 with Ks ≡ βJs,

r ¼ e2K
0
2 − cosh 2K2

sinh 2K2

ð9Þ

and

s ¼ cosh 2K�
1

e2K
0
2 cosh 2K2 − 1

sinh 2K2

− e2K
0
2 sinh 2K�

1 cosh 2h1:

ð10Þ
The Q� have similar structure to the P� but, crucially,
never coincide with the P�. Hence, they cannot remove the
simple poles coming from the zeros in the denominator of
(5), needed to establish the limiting free energy. The details
ofQ� do not contribute to the location of the poles but only
to the residues, and will be given elsewhere.
Henceforth we assume isotropy in bulk, J1 ¼ J2 ¼ J, so

K1 ¼ K2 ¼ K. The singularity is given by Pþ ¼ 1; for
Pþ > 1 (the nonwet state), f is obtained through

cosh βf ¼ coshð2K − 2K�Þ þ 1 −
1

2

�
Pþ þ 1

Pþ

�
; ð11Þ

while for Pþ < 1 or complex Pþ (the wet state),
βf ¼ 2K þ ln tanhK, which equals βγþ− [17,18].
For a given K we denote the value of h1 at wetting by

h1w. For the special case Js ¼ J (which was solved in
1980), the critical wetting phase boundary satisfies
e2Kðcosh 2K − cosh 2h1wÞ ¼ sinh 2K [6,7]. Figure 1 shows
critical wetting phase boundaries for Js ≥ J. For Js=J ¼ ∞
we obtain cosh22K= sinh 2K − cosh 2h1w ¼ 1, which
simplifies to

FIG. 1. Wetting phase boundaries in surface field h1 and
temperature 1=K, for various surface-coupling enhancements
Js=J. For finite Js=J the wetting transition is of second order and
the phase boundary is parabolic near h1 ¼ 0, whereas for Js=J ¼
∞ the wetting transition is of first order and the phase boundary is
linear near h1 ¼ 0. The horizontal dashed line marks bulk
criticality.
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h1w ¼ K − K� ¼ K þ 1

2
ln tanhK; for Js=J ¼ ∞;

ð12Þ

and has a simple physical interpretation. For Js=J ≫ 1 (the
surface ferromagnetic limit) the surface magnetization m̂1

(at n ¼ 2 on the lattice) saturates to þ1 or −1, since all
surface spins are aligned. The wetting transition is induced
by a massive surface spin flip from −1 to þ1, causing an
interface between þ and − phases in bulk to unbind from
the surface. Anticipating a first-order transition for
Js=J → ∞, we can conjecture h1w simply by equating
the surface energy gain of wetting to the surface tension
cost of a free interface.
The phase boundary for Js=J ¼ ∞ is linear near the bulk

critical point. For K → Kc, h1w ∼ 2ð1 − Kc=KÞ, where
Kc ¼ 1

2
lnð1þ ffiffiffi

2
p Þ ≈ 0.4407 is the bulk critical coupling.

This differs from the quadratic (or higher-order) behavior
found for the critical wetting phase boundary near bulk Tc
for finite Js=J. The linear character is reminiscent of mean-
field first-order wetting near surface-bulk multicriticality,
with tricritical wetting for T → Tc [10].
Remarkably, the wetting transition already appears to be

of first order at large but finite Js=J. Figure 2 shows the
surface excess free energy f near the transition. We fix the
temperature through 1=K ¼ 2 and vary h1. In Fig. 2(a), a
sharp corner clearly appears for Js=J ¼ 6, suggesting first-
order behavior. The singular part of f is shown in Fig. 2(b).
We denote the value of f at wetting by fw ≡ fðh1wÞ. The
simple behavior fw − f ∝ ðh1w − h1Þ2 found for Js=J ¼ 1
is the signature of second-order wetting. However, for

larger surface coupling, say Js=J > 4, there is an extended
range of h1 for which fw − f ∝ ðh1w − h1Þ, which indicates
first-order character. Only very near the transition does
fw − f cross over from ðh1w − h1Þ- to ðh1w − h1Þ2-like
behavior. In the regime where fw − f ∝ ðh1w − h1Þ, the
transition is effectively of first order.
The emerging first-order character is conspicuous in the

surface excess magnetization m1, defined as m1 ≡
−βð∂f=∂h1Þ and related to the surface magnetization m̂1

through m1 ¼ m̂1 þ 1, so that m1 ¼ 0 in the wet state.
Figure 3 showsm1 for 1=K ¼ 2. In Fig. 3(a),m1 develops a
steplike singularity as Js=J is increased. Figure 3(b) shows
detail near the transition point. For large Js=J, m1 stays
constant (at m1 ¼ 2) until very close to the transition, and
eventually crosses over to the second-order transition
behavior; this is a linear decrease m1 ∝ ðh1w − h1Þ, which
corresponds to lines of slope 1 in Fig. 3(b).
New physics arises when examining the surface suscep-

tibility and the surface specific heat. Accompanying the
emerging first-order character, there is anomalous scaling
in the surface susceptibility χ11, defined as the second
derivative of f with respect to h1. Figure 4(a) shows χ11 for
different Js=J at 1=K ¼ 2. For the standard second-order
wetting transition, χ11 makes a finite jump. For large Js=J,
the jump is still finite but very large. Near the transition
point, χ11 displays an apparent divergence according to a
power law as h1 approaches h1w from below (the nonwet
state). For example, for Js=J ¼ 6, we find χ11 ∝ ðh1w −
h1Þ−3=2 for 10−9 < h1w − h1 < 10−3, implying an effective
exponent for χ11 equal to 3=2. This cannot be explained by

(a) (b)

FIG. 2. Surface excess free energy f versus surface field h1.
(a) The transformation of a parabolic singularity (second-order
transition) into a corner (apparent first-order transition) as Js=J is
increased. (b) The crossover from apparent first-order to asymp-
totic second-order character in the free-energy singularity, in a
log-log plot. Solid lines with slopes 1 and 2 have been added (thin
black lines). The temperature Tð< TcÞ is fixed through 1=K ¼ 2.

(a) (b)

FIG. 3. Surface excess magnetization m1 versus surface field
h1. (a) The linear approach to zero for (second-order) critical
wetting gradually transforms into an apparent discontinuity as
Js=J is increased, indicating first-order character. (b) The cross-
over from first-order (piecewise constant) to second-order char-
acter (vanishing with critical exponent 1), in m1 versus surface
field in a log-log plot. A solid line with slope 1 has been added
(thin black line).

PRL 116, 046101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 JANUARY 2016

046101-3



the usual scaling relations. A similar anomaly is found for
the surface specific heat c, which is proportional to the
second derivative of f with respect to 1=K. Figure 4(b)
shows c for different Js=J, with h1 fixed at the value of h1w
found for 1=K ¼ 2. The exponent characterizing the
apparent divergence of c at wetting for large Js=J also
equals 3=2.
We now demonstrate the robustness of the linear

dependence of f on h1 near the wetting transition for
Js=J ≫ 1, and we explain the anomalous scaling. For
Js=J ≫ 1, we have K0

2 ∼ 2ðJs=JÞK, so in view of (9),
r ≫ 1. We fix K and vary h1. At the transition, r ¼ sðh1wÞ.
We expand s about h1w, with 1 ≫ Δh1 ≡ h1w − h1 > 0,

sðh1w − Δh1Þ ¼ rf1þ 2Δh1 sinh 2h1w
þO(ðΔh1Þ2)þOðΔh1=rÞg: ð13Þ

The form (8) of Pþ suggests two important scaling limits.
The first is the critical limit r2ðs=r − 1Þ ≪ 1, to which we
will return later. The second is the strong surface-coupling
limit r2ðs=r − 1Þ ≫ 1, or 1 ≫ Δh1 ≫ e−8ðJs=JÞK ¼ e−8Ks.
In this limit, we obtain

Pþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δh1 sinh 2h1w

p
− 1=rþO(ðΔh1Þ2)

þOðΔh1=rÞ þOð1=r2Þ: ð14Þ

The free energy difference fw − f in this limit is
interesting. Using (11), we obtain the surprising form

βðfw − fÞ ¼ 2Δh1 −
2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δh1

sinh 2h1w

s
þO(ðΔh1Þ2)

þOðΔh1=rÞ þOð1=r2Þ; ð15Þ

implying that the transition is effectively of first order, since
the second term is much smaller than the first due to the
prefactor 1=r. However, this nonlinear correction term
becomes all important when taking the second derivative
of the free energy. Thus, Eq. (15) allows one to instantly
capture the anomalous scaling for the surface susceptibility,

χ11 ∝ ðΔh1Þ−3=2: ð16Þ

In the “temperature” direction, we can get similar but
more complicated expansions. If we fix h1 and Js=J, and
expand the free energy about the wetting point K ¼ Kw, we
obtain, with ΔK ≡ K − Kw > 0,

βðfw −fÞ≈ A
2sinh2h1

ΔK−
1

2rsinh2h1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2AΔK

p
; ð17Þ

where A≡AðKw; h1; Js=JÞ≡ ∂ lnðs=rÞ=∂KjK¼Kw
. This

clarifies why there is also anomalous scaling in the specific
heat, with the same exponent 3=2, as illustrated in Fig. 4(b).
No matter how large Js=J is, the asymptotic behavior in

the limit Δh1 → 0 is invariably critical wetting (with a
second-order transition). The only exception is Js=J ¼ ∞,
for which (15) holds exactly with 1=r ¼ 0. The asymptotic
behavior for all finite Js=J is easily obtained in the critical
scaling limit r2ðs=r − 1Þ ≪ 1, with the result
fw − f ∝ ðΔh1Þ2. However, for large Js=J the critical
region is exponentially small, i.e.,

0 ≤ Δh1 ≪ e−8ðJs=JÞK: ð18Þ

The global wetting phase diagram at bulk coexistence in
the variables h1 and Js=J, featuring the surface ferromag-
netic as well as antiferromagnetic regime, is presented in
Fig. 5 for a representative fixed temperature 1=K ¼ 2. The
phase boundary separating the wet and nonwet regions
(solid line) consists of critical wetting but develops appar-
ent first-order character for large Js=J. True first-order
wetting is obtained for Js=J ¼ ∞.
For Js < 0 (antiferromagnetic surface coupling) and

large jJs=Jj the surface forms a perfect antiferromagnetic
chain, and m̂1 ¼ 0 unless the (uniform) surface field is
strong enough to break the staggered surface order.
Depinning becomes possible for K0 > −2Js or
h1 > −2ðJs=JÞK. This defines the slope of the asymptote
for large jJs=Jj to the critical wetting phase boundary found
for Js < 0.
The apparent first-order character of the wetting tran-

sition for large Js=J can be interpreted physically. In the
solid-on-solid model description of interface delocalization

(a) (b)

FIG. 4. Anomalous scaling of (a) the surface susceptibility χ11
and (b) the surface specific heat c. The apparent divergence, with
exponent 3=2, is manifest and persists until the critical region is
reached. There, a crossover to a constant value takes effect. This
value is the magnitude of the jump in the thermodynamic
response function at critical wetting. Note how the critical region
shrinks as Js=J is increased [cf. Eq. (18)]. Solid lines with slope
−3=2 have been added (thin black lines).
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in d ¼ 2, the interface unbinds from the surface in a
continuous and gradual manner for Js=J ≲ 1, while for
Js=J ≫ 1 it can unbind only via quantum tunneling
through a high activation barrier [2,11]. This can explain
an effective first-order wetting transition, which crosses
over to a continuous one only extremely close to the
transition.
At large Js=J, the ultimate crossover to critical wetting

cannot be detected by accurate numerical techniques for
finite systems (e.g., such as those developed in [19,20]) and
it is unrealistic to expect that it could be seen in
Monte Carlo simulation or in an experiment in a (quasi-)
2D system. The effective first-order transition with novel
scaling properties, which we have highlighted, is for all
practical purposes the dominant wetting behavior.
In conclusion, we have shown by exact solution that the

wetting transition in the 2D Ising model is critical for all
finite Js=J, but displays first-order character for large Js=J.
This apparent first-order behavior is accompanied by
anomalous scaling of the surface susceptibility and the
surface specific heat, featuring for both quantities an
apparent divergence with an exponent 3=2.
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