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An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is
shown to provide an adaptive resonance condition that enables unprecedentedly robust movement
generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory
is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model
information, signal processing, and control computation. The observed behavior dramatically differs from
the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties
in model information and nonlinear effects inevitably present in real world applications.
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Parametric resonance was first reported by Faraday in
1831 [1]; he observed surface waves in a fluid-filled
cylinder under vertical excitation exhibiting half the fre-
quency of the excitation. One of the simplest mathematical
models that explains this effect is given by the (damped)
Mathieu equation [2]: § + yg + [0} + € cos(w,1)]g = 0.
Under week excitation and small dissipation this linear
oscillator displays an instability effect, provided the natural
frequency is near half the frequency of the excitation
wy/w, ~1/2 and the excitation strength is above the
instability threshold ¢/w, >y [3].

Nonlinear oscillators, in general, do not exhibit
unbounded behavior under parametric excitation (even if
there is no dissipation) [4]. This is because nonlinearity
relates the amplitude and the frequency of the oscillator;
when the amplitude increases, the natural frequency
changes, i.e., detunes with respect to the constant frequency
of the excitation [5]. This effect imposes a fundamental
limit to many practical applications aiming to achieve large
amplitude oscillations [6,7]. One of the main reasons for
this limitation stems from parametric excitation realized in
a feed-forward manner, using nonadaptive time-dependent
fixed-frequency modulation.

In this Letter, we propose an alternative means to
parametric excitation using optimal feedback perturbations.
Application of this idea converts a parametrically modu-
lated nonautonomous oscillator to a feedback controlled
hybrid state automaton. As opposed to time-dependent
feed-forward excitation, the proposed state-dependent
modulation is not affected by nonlinearity induced ampli-
tude saturation, and is shown to provide robust movement
amplification for both undamped linear and damped non-
linear oscillators. Compared to time-delay feedback control
[8]—used in wide variety of applications to realize direct
forcing [9] as well as parametric modulation [10-13]—our
controller employs instantaneous state feedback to
implement an optimization-based adaptive resonance con-
dition without model information, sophisticated on-line
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computation, continuous measurements, or signal process-
ing (frequency and phase identification) from past obser-
vations. In this way, it provides an effective and robust
mechanism to parametric excitation desirable in practical
applications.

Example.—To motivate the derivation of our feedback
controller we will first consider a canonical optimal control
problem with an aim to maximize the displacement ¢ () of
a harmonic oscillator using stiffness modulation

o o [4(T)=4q(0)] 0

subjectto g+k(u)g=0, ¢(0)#0, ¢(0)=0,

where k = k(u) > 0 is the control dependent stiffness,
U = [tmin» Umayx) 18 the admissible control space, while T is
a finite but otherwise unspecified terminal time. Under a
relatively weak technical assumption [i.e., dk(u)/du > 0],
the optimal feedback controller to the above problem is
given by

. Umax  if gq <0
g e 1= )

Application of this control law on the oscillator (1)
{iee., g + k[ugh(g.§)]q = 0} leads to movement amplifi-
cation according to the following recurrence relation:
Gni1 = Apnqn, Where g, = q(nT) indicates the amplitude
of the oscillator, n € N denotes the number of motion
=172

min

cycles, T = x| + k;ﬁi/ 2)] is the time required for one
cycle during the oscillations while /121]3; = kmax/kmin 18 the
cycle-to-cycle amplitude ratio. Evidently, if ﬂ;%t > 1, the
amplitude of the oscillator will grow without bound over
time. Notably, the above optimization suggests a bang-bang
type state dependent stiffness modulation for the most
effective movement generation [14].

The controller presented above can be derived by the
following static optimization: max,cy — k(u)gq. As
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suggested by this formulation, the above dynamic opti-
mization implements instantaneous power maximization.
In this Letter we adapt the idea of instantaneous power
maximization to realize dynamically optimal movement
generation for damped nonlinear oscillators. This idea is
the subject of the following generalization.

Parametric feedback controller.—Let us now consider a
nonlinear oscillator

G+vrq=F(q,u), (3)

where y > 0 characterizes dissipation, the system has an
equilibrium at g = g, i.e., Yu:F(q,,u) =0, the force
F(q,u) is a symmetric function of the oscillators displace-
ment, ie., —F(q—gq,,u)=F(-(¢q—q,),u) and it is
restoring at large displacements, i.e., V(|g — q,| > 1, u):
F(q—-q,,u)(qg—q,) <0.Below, we shall find convenient
to represent this force in the following form:

F(q,u) = —K(q,u)(q - q,) 4)

where for small displacements K(q = q,,u) = k{(u) =
—0F/0q|,—, is the local stiffness that characterizes the
stability of the equilibrium ¢,, while for large displace-
ments K(q,u) > 0 is a global stiffness that indicates the
extent to which the force acts towards the equilibrium. In
the following, we introduce an optimal feedback controller
for movement amplification using nonlinear parametric
excitation.

Consider a dynamical system (3) and (4) where the
control input is chosen to maximize the power input to the
oscillator according to the following static optimization:

max — K(q,u)(q — q,)q. (5)

uel

Assuming that (i) the global stiffness K = K(q,u) is a
strictly monotonic function of the control input ¥ € U and
that (ii) the admissible control space is given by a box
constraint U = [up,, Unmax), the feedback controller pre-
dicted by the above optimization is given by the following
relation:

Unax  1f 5(q,q) <0
upy(g.4) €U if s(q.4) =0 (6)
Umin if S(q, Q) > 0’

where s(q,q) = sgn(0K/du)(q — q,)q is the switching
function. It turns out that under relatively week technical
assumptions [i.e., F(q, u) and OF (g, u)/Oq are continuous
for all admissible positions and controls], the optimality
condition asserted by Pontryagin’s maximum principle [15]
to an associated dynamic optimization—where the goal is

to maximize the amplitude of the damped nonlinear
oscillator (3) and (4) at each oscillation—is equivalent to
(6); see Ref. [16]. This is to say that the nonlinear
parametric excitation (6), derived from the static optimi-
zation (5), implements a dynamically optimal strategy to
amplitude maximization on a large class of damped non-
linear oscillators.

There are a number of notable features to the proposed
controller (6): first it is state dependent and as such more
robust than an alternative time-dependent feed-forward
controller; second, it does not require model information
to be implemented; and, third, it is a switching controller
that can be operated without continuous sensory feedback.
Furthermore, the two assumptions in the derivation of (6)
are rather general, i.e., they can be satisfied by a wide class
of physical mechanisms used to implement parameter
modulation in different physical domains and scales
[4,6,11-13]. Finally, we note that the proposed controller
does not guarantee movement amplification; i.e., in order to
provide movement amplification, the energy injected
through parametric excitation should exceed the amount
of energy being dissipated [16]. Below we shall demon-
strate this under fairly general conditions in simulation and
experimental implementation.

Application.—At first glance we aim to test the robust-
ness and efficacy of the proposed controller when applied
to a damped linear oscillator:

G+7rq+ki(u)g =0, (7)

where y > 0 characterizes dissipation, k;(u) = 1 + Aku €
(k1 min» K1 max] 1S @ positive control dependent stiffness,
while u € U = [-1,1] is the control input. Application
of the proposed feedback controller (6) on this system leads
to the following recurrence relation:

k
Gn+1 = A'g%t(y’ Ak)‘]ﬂ = %e_(l/Z)},ana
1 min

where g, = q(nT) is the amplitude of the oscillator, n
denotes the number of motion cycles, T = w7!(7 +
2¢,) + @' (m — 2¢_) is the time required for one motion
cycle, w} =14 Ak —1y? is the squared angular velocity,
@+ €10,7/2) is the phase implicitly given by
tan(¢.) = 1yw7!, while 4} is the cycle to cycle amplitude
ratio. The region in the parameter space Apy (7, Ak) > 1,
leading to parametric resonance, is shown in Fig. 1(a)
(shaded area).

As an alternative means to amplification, one may utilize
feed-forward modulation. Among all continuous and piece-
wise-continuous excitations, including but not limited to
resonant sine wave u{t = sin(4z¢/T) and square wave
upy' = sgn[sin(4x1/T)] modulations [2,18], the following,
when perfectly tuned, i.e., 6k =0,
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FIG. 1. (a) (y,Ak) stability chart for the damped linear

oscillator (7) under optimal parametric feedback control. The
resonance condition is given by Ak > Ak (y) =Llzy—
[(3/16)7 — (1/192)7%]y> + O(y°). (b) (5k, Ak;y) stability chart
showing the behavior of the oscillator under perfectly tuned
(6k = 0) and off-tuned (6k # 0) feed-forward modulation (8).
(c) Behavior of the oscillator (y = 0.3, Ak = 0.5) under optimal
feedback excitation, feed-forward modulation, square wave
modulation, and sine wave modulation under perfectly tuned
conditions (6k = 0, white area) and when off-tuning is present
(6k = 0.2, shaded area). The effectiveness and robustness of the
feedback controller is evident from these simulations.

MFF(t;y,Ak,ék) S
1 ifte[nT,nT+T,)
—1ifre[nT+T, .nT+T,+T_)

| ®)
1 ifrenT+T,+T_,nT+2T, +T_)
[

-1 ifrenT+2T +T_,nT+2T_ +2T_),

where T.=Q7'[(z/2)+®.], Q% = @ + 6k, tan(Py) =
17Q7!, leads to the most effective amplification. The
amplification rate of the corresponding optimal feed-for-
ward controller, ugy = ugp(t;7, Ak, 0), is the same as the
one obtained using the proposed feedback controller, and
under perfect knowledge of the system parameters the two
controllers would indeed perform the same [Fig. 1(c), white
area]. However, there is a crucial difference between these
two controllers in applications when system parameters are
not precisely identifiable. This is because unlike the feed-
forward controller, the feedback controller is able to adapt
both the frequency and the phase of the excitation accord-
ing to the changes in behavior of the oscillator. This is what
makes our parametric excitation independent of the con-
straint imposed by the limited mistuning [19] allowable

during feed-forward modulation [Figs. 1(b) and 1(c),
shaded areas].

We will now investigate the effect of nonlinearity on the
behavior of the proposed controller. For this purpose, let us
consider a prototypical parametrically controlled oscillator,

§+ki(u)g+kq® =0, 9)

where ki (u) = ko + Aku € [k nin, k1 max) 1S the control
dependent stiffness, u € U = [—1, +1] is the control input,
while k3 > 0 introduces Duffing-type nonlinearity [20]. It
is known that a typical Duffing nonlinearity results in
amplitude saturation under fixed frequency excitation (e.g.,
sine-wave and square-wave stiffness modulation) even
under no dissipation [4,5,7]. However, when the oscillator
above is subject to the proposed parametric feedback
excitation, its amplitude approaches infinity (from almost
all initial conditions) even under infinitesimally small
excitation [16]:

qg—»oo ~ kl max klmin n, (10)
k3

where ¢, denotes the amplitude at every half motion cycle.
This is to say that the proposed feedback controller is not
prone to the classical limitation known as amplitude
saturation due to nonlinearity induced frequency detuning.
This is because it automatically adapts the frequency (and
the phase) of the excitation based on the behavior of the
oscillator (see Fig. 2).

For the considered undamped system (9), the prediction
given by (10) is valid not only for the monostable case
[0 < kimin < k1max> see Fig. 2(a)] but also when the
oscillator displays bistable behavior [k;pmin < 0 < K max
or kimin < kimax < 0 as shown in Fig. 2(b)]. However,
the long term behavior of such a nonlinear oscillator can be
much more complicated when damping is not negligible.
Notably, in addition to the finite amplitude oscillations in
the monostable case and the sustained large amplitude
interwell oscillations in the presence of bistability, we may
also observe bifurcation leading to off-centered intrawell
oscillations when the system is weakly excited and oper-
ated in the bistable regime. These qualitatively different
behaviors have been observed in our experimental
implementation.

Implementation.—Laboratory experiments have been
carried out to demonstrate the feasibility of the present
parametric feedback control scheme under real-world
conditions. The electronic circuit [Fig. 3(a)] used in these
experiments is a damped nonlinear oscillator. Depending
on the externally adjustable static stiffness parameter V ,
this circuit can emulate a monostable oscillator—charac-
terized with a single-well static potential—or a bistable
oscillator—characterized with a double-well potential. The
corresponding static bifurcation diagram, showing the
location of the equilibrium points in a function of V; ,
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FIG. 2. (a) Monostable Duffing oscillator (9) (ko =1,
k; = 0.01, Ak = 0.2) under optimal parametric feedback control.
No model parameters are used to implement this controller. The
same plot also shows the behavior of the oscillator under feed-
forward parametric excitation implemented using the model-
based controller ugg(#;7 = 0, Ak = 0.2,k = 0) (8). This con-
troller is optimal in the present context under the assumption that
the nonlinearity is negligible, i.e., k3 ~ 0. (b) Bistable Duffing
oscillator (kg = —1, k3 = 0.01, Ak = 0.2) under optimal para-
metric feedback control. The dotted lines denote the location of
the stable nontrivial and the unstable trivial equilibrium positions
of the system (i.e., when u = up,,, and u = uy;,). Self-tuning of
the excitation is evident for the feedback control implementation.

is depicted in Fig. 3(b) (Vi = 0). Figure 3(c) shows the
behavior of this circuit in strongly nonlinear (bistable)
regimes under low amplitude and high amplitude para-
metric modulation. The corresponding self-adaptive param-
eter modulation is shown in Fig. 3(d). The experimental
data illustrate the qualitatively different behaviors of the
weakly excited oscillator [Figs. 3(b), 3(c), left] as well as
the robust large amplitude interwell motion of the oscillator
under strong excitation [Figs. 3(b), 3(c), right]. These
results corroborate the theoretical arguments outlined
above, in particular, the efficacy of the controller in
movement amplification and its ability to self-tune against
substantial unforeseen parameter variation. The observed
behavior dramatically differs from the one achievable using
feed-forward parametric excitation that, aside from being
limited in nonlinear domains, would require retuning in
practical implementation.

Our implementation is subject to a number of practical
effects not present in the above consideration. Most
notably, these are due to (i) design imperfections—result-
ing in symmetry breaking terms in the restoring force [22],
(i) feedback delay—induced by a practical, dual threshold
noise-immunized realization of the switching automaton
(implemented using a Schmitt trigger comparator [23]), and
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FIG. 3. (a) Tunable parametrically excited nonlinear oscillator

Gg+yqg=F(q,u). The force function 1is given by
F(q,u) = Fp(q) + Fpg(q, u), where the first term (implemented
with diodes D, ,) resembles the bistable Silva-Young oscillator
[21] while the second term Fpg(q,u) = —(ky+ Aku)g =
—aVi(u)g = —a(Vig + Varu)q (Where a is a circuit parameter)
provides parametric excitation. The controller (6), u =
Viu/Vimax = Ush(q. ), is implemented using a Schmitt trigger
comparator. The amplitude of the parametric excitation V;
R|/R¢ is adjusted by R4 Further, we use an external input
Vo to change the static stiffness of this circuit. The values of the
analog components are L = 12 mH, C =470 nF, R =10 Q,
Ri=10kQ, R,=1MQ, Ry;=15kQ, R;=1KkQ,
Rs = 10 MQ, and Rg € [0.001, 1] MQ. (b) Mean oscillation
amplitude vs static stiffness V plots under low amplitude V,;, =
1 V and high amplitude V,;, = 2 V parametric modulation. The
same plot includes the static bifurcation diagram, i.e., equilibrium
positions of the circuit under no parameter modulation, i.e.,
Var = 0 V. The solid black lines (dashed gray lines) correspond
to the behavior of the system displayed under quasistatic forward
(backward) sweep experiments. The error bars on these plots
indicate 3 standard deviations. (c) Phase plots and (d) optimal
parameter modulation shown for selected experiments.

(iii) bandwidth limited parametric excitation—due to the
inherent power limitation that applies to any physical
mechanism used to implement parameter modulation
[24]. While the proposed controller is not immune to these
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effects [16], its performance is not sensitively affected,
provided the imperfections are reasonably small and the
bandwidth of the parameter modulation is high compared
to the bandwidth of the oscillations. As a matter of fact, as
long as the bandwidth of the modulation is an order of
magnitude higher than the bandwidth of the oscillations,
our feedback controller will provide a suboptimal model-
free alternative of the truly-optimal model-based controller.

Conclusion.— The idea to feedback the detected move-
ment to the oscillator, to perform direct forcing or param-
eter modulation, has been a central theme in many recent
investigations [9—13]. Common to these approaches is the
continuous frequency and phase identification from past
observations and the time delay in the feedback loop used
in the underlying delay feedback control implementation
[8]. As an alternative idea, here we propose a discrete state
feedback control scheme that implements an adaptive
resonance condition while converting the original system
to a hybrid state automaton.

We envision the present findings to be useful in gen-
erating robust large amplitude oscillations in a wide range
of applications, including (i) microcantilevers used for
mechanical domain per amplification in sensing applica-
tions (atomic force microscopy [25,26]), (ii) nanoelectro-
mechanical resonators used as frequency determining
elements (scaled-down alternatives to quartz crystals
[27]) in timing applications [28], as well as (iii) large scale
networks of electromechanical circuit resonators built to
investigate the complexity of the human brain [29] through
neurocomputation [30,31].
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