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Phase-control techniques of chaos aim to extract periodic behaviors from chaotic systems by applying
weak harmonic perturbations with a suitably chosen phase. However, little is known about the best strategy
for selecting adequate perturbations to reach desired states. Here we use experimental measures and
numerical simulations to assess the benefits of controlling individually the three terms of a Duffing
oscillator. Using a real-time analog indicator able to discriminate on-the-fly periodic behaviors from chaos,
we reconstruct experimentally the phase versus perturbation strength stability areas when periodic
perturbations are applied to different terms governing the oscillator. We verify the system to be more
sensitive to perturbations applied to the quadratic term of the double-well Duffing oscillator and to the
quartic term of the single-well Duffing oscillator.
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Introduction.—Since the seminal observation of chaos,
the Duffing oscillator has played a key role in nonlinear
dynamics [1–6]. These pioneering studies considered the
motion of a periodically forced steel beam deflected
towards two magnets. As is known, the Duffing oscillator
[7] is the first system were chaos was observed exper-
imentally in a controlled way, in 1960–1961 by Ueda [4,5].
Duffing-like proxys have been found recently to have the
distinctive technological advantage of bypassing noisy
spectra which normally pollute driven (i.e., nonautono-
mous) oscillators [8]. Such oscillators are among the most
precise devices presently in existence, allowing its oscil-
lation modes to be measured with very high accuracy.
Nowadays, the Duffing oscillator has become a paradig-
matic system for the assessment of chaos and for testing
analytical methods such as the Melnikov criterion to detect
global homoclinic bifurcations [9].
The Duffing oscillator is important in the context of

chaos control [10], where the aim is to extract periodic
behaviors from chaos by applying small perturbations.
In particular, the Duffing oscillator was considered as a
paradigmatic system on which it is possible to obtain
suppression of chaos by adding a second small harmonic
perturbation on the cubic term of the force [11]. The
effectiveness of this control method was further tested on
an analog implementation of the Duffing oscillator [12],
showing the key role played by the phase difference
between the applied perturbation and the driving term.
The validity of this phase control of chaos strategy has been
demonstrated in different systems [13–19]. The technique
was successfully used to control escaping dynamics in an
open system [20,21], and spiking dynamics in an excitable

neuron model system [22]. More recently, phase control
has been applied to manipulate entanglement in quantum
parametric oscillators by adjusting the amplitude and phase
of an external controller applied to a classical counterpart
of the quantum system [23].
In spite of the attention drawn by this technique in recent

years and its variety of potential applications, several
aspects remain unclear. For example, when considering
the paradigmatic single- and double-well Duffing oscilla-
tors, phase control can be applied either to the two terms
deriving from the potential as a parametric perturbation, or
to the external drive, as an additive perturbation. However,
the size of the stability regions and their sensitivities to each
individual perturbation are not known a priori. Since the
effects of these perturbations differ, their comparison will
highlight the differences in perturbing a chaotic trajectory
affected by the presence of three fixed points, that is, an
unstable saddle point at the origin (0,0) and two stable foci
ð−1; 0Þ and (1,0) in the case of a double well, and a single
stable fixed point (0,0) for the single well. In this Letter we
characterize the effect of these different types of controlling
perturbations in an analog implementation of both Duffing
oscillators allowing the possibility to discriminate between
stable and unstable solutions. We find that the numerical
analysis based on the isospike technique [24–26] allows
efficient detection and separation between periodic and
chaotic orbits visited during the temporal evolution.
Experimental evidence of phase control.—Phase control

is first tested in the laboratory by implementing an analog
version of driven Duffing oscillator (for the electronic
layout of the circuit, see Fig. 1 of the Supplemental
Material [27]). The key elements are integrators (Linear
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Technology LT114) and multipliers (Analog Devices
MLT04). Two sinusoidal function generators provide the
driving signal necessary to lead the system in a chaotic
condition and the control signal with an adjustable phase
difference with the driving signal, to weakly perturb it. The
unperturbed circuit is governed by the equation

γ−2ẍþ bγ−1 _x − xþ x3 ¼ A cosð2πfdtÞ ð1Þ

where γ ¼ 1=RC with R ¼ 10 kΩ, C ¼ 10 nF, A is the
driving signal amplitude at fd ¼ 1.591 kHz, and b ¼ 0.25.
Then chaotic oscillations exist in the range 0.438 ≤ A ≤
0.442. To control the oscillator we use the driving term

fðtÞ≡ 1þ ε cosð2πfctÞ

where ε is the strength of perturbation with frequency fc.
Since the phase difference between the forcing and the
control signals is the key parameter of our control strategy,
we define fc ¼ mfd þ 1=Tsw where m can assume the
values 1=3,1=2, 1, 2, 3 and Tsw is the sweeping phase
period during which a phase variation of 2π occurs. With

this, may write fðtÞ ¼ 1þ ε cos½2πmfdtþ ϕðtÞ�, where
ϕðtÞ ¼ 2πt=Tsw and Tsw chosen equal to 4s. Phase control
of chaos is then implemented in three distinct ways, acting
either as a perturbation to the linear, cubic, or driving term:

γ−2ẍþ bγ−1 _x − fðtÞxþ x3 ¼ A cosð2πfdtÞ ð2Þ

γ−2ẍþ bγ−1 _x − xþ fðtÞx3 ¼ A cosð2πfdtÞ ð3Þ

γ−2ẍþ bγ−1 _x − xþ x3 ¼ fðtÞA cosð2πfdtÞ: ð4Þ

In Fig. 1(a) we show experimental representations of the
attractors that can be obtained for different values of the
phase, either periodic (with one or two loops around the left
and the right potential wells) or chaotic. Using the slow
sweeping phase technique described above, it is possible to
obtain the Poincaré section of the x signal by recording the
maxima from its temporal evolution for approximately
constant values of the phase difference. Each of these
signals, recorded with a Tektronix digital scope TDS7104,
consists of 5 × 105 samples for a duration of 4 s during
which a phase sweep of 2π occurs. In Fig. 1(b) we show the
experimentally obtained bifurcation diagram. Periodic
windows are clearly distinguished from chaotic ones during
a phase sweep.
In addition to the separation of chaos and regularity

using Poincaré sections [Fig. 1(b)], a further discrimination
between them is provided by a real time indicator imple-
menting the following on-the-fly algorithm: a low pass
filter is applied to the x2 þ y2 signal, and its output is fed to
a voltage comparator whose threshold can be adjusted in a
suitable way. When the solutions are periodic, the filtered
signal converges to its mean value with small periodic
oscillations and is easily discriminated from the chaotic
regions where the average of the filtered signal is time
varying around a lower value due its higher content of
harmonics. In our configuration, the indicator assumes zero
values when the solutions are stable and a nonzero value
when chaotic. Such an indicator is plotted as a function of
the phase in Fig. 1(c). The indicator is not able to
distinguish different periodic attractors as the Poincaré
section does but, on the other hand, is able to detect if a
periodic orbit is observed in the considered range. Notice
that making use of this indicator one could transform the
phase control method into a closed loop method, as the
OGY control method [10]. Indeed, the phase sweeping
could be stopped at a given value based on the values
assumed by the indicator, allowing the permanent stabili-
zation of a periodic solution.
An additional advantage of our chaos indicator is that it

allows us to obtain, in a straightforward way, the stability
regions for our control scheme in the ε − ϕ parameter
plane. A reconstruction of such stability regions for the
three aforementioned control schemes is reported in Fig. 2,
when the perturbation is applied to the linear term x, to the

FIG. 1. (a) Examples of regular (left and middle panels) and
chaotic orbits (right panel) obtained in our experimental imple-
mentation of phase control to the linear term of the oscillator,
Eq. (2). (b) Bifurcation diagram from a Poincaré section on the
x signal vs phase. (c) Chaos indicator vs phase: we can see that it
reproduces the areas of periodicity (chaos indicator close to zero)
and of chaos (values between zero and one). Here ε ¼ 0.0121
and m ¼ 1.
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cubic term x3, and to the driving term, respectively. We
clearly see that the indicator can isolate even small regions,
where period-two solutions are entrained. In other terms,
we are able to capture fine structures in parameter space of
stable solutions embedded in chaos.
As we said, our setup allows us to provide a fast

characterization of the dynamics of the system for each
value of the phase and the amplitude of the system
considered. To obtain a more global view of the effect
of each of these perturbations, we evaluated the sensitivity,
as the minimum value of ε corresponding to the appropriate
phase ϕ, for different values of the ratio m between the
frequency of the perturbation and the main driving. The
result is shown in Fig. 3.
It appears that the maximum sensitivity is near the

resonance value m ¼ 2 and when the phased perturbations
are applied on the linear term x, rather than on the cubic term
or the driving. The reasons can be explained comparing the
double- and the single-well oscillators. In the doublewell, the
chaotic attractor is strongly influenced by the unstable saddle
at the origin and confined between the two potential valleys
around�1. In contrast, in the singlewell the fixed point at the
origin is stable and chaos is reached for high values of the
driving term. Then, the chaotic attractor visits areas with x
and y values greater than �1 (see Fig. 2(a) in the
Supplemental Material [27]), implying that the system is
more sensitive to perturbation on the cubic term of force.
Furthermore, the two chaotic attractors differ in their power
spectra due to the different content of even and odd
harmonics. The last ones are a consequence of a symmetry
breaking occurring in the single-well Duffing oscillator
[21,28,29]. As a result, the double well Duffing oscillator
ismore sensitivewhenm ¼ 2. As far as phased perturbations
are applied to the driving term, we observe the single-well to
be more sensitive than the doublewell because for it chaos is
reached for much higher values of the driving. Overall, our
systematic analysis confirms that an adequate selection of the
parameter on which to apply the perturbation is fundamental
for the phase control scheme. However, in more complex
systems like, e.g., chaotic lasers [30–32], the perturbation
might need to be applied distinctly than here.

Numerical simulations.—For comparison, we computed
two types of stability diagrams: (i) standard diagrams based
on Lyapunov exponents, and (ii) isospike diagrams
[24–26], a more fruitful type of diagrams, based on
computing the number of local maxima per period for
the periodic oscillations. To produce such diagrams, a
parameter window of interest is covered with a mesh of
N × N equidistant points. For each point, the temporal
evolution is obtained by numerically integrating the oscil-
lators during 105 equal steps h ¼ 0.01 using the standard
fourth-order Runge-Kutta algorithm. In Fig. 4, parameters
were scanned horizontally from left to right, starting from
ðx; y; tÞ ¼ ð0; 0; 0Þ and proceeding horizontally to the right
be “following the attractor”; i.e., instead of systematically
reinitializing from (0,0,0), we simply reused the condition
already present in the computer buffer from the previous
calculation. To compute the number of local maxima per
period, after determining the Lyapunov exponents we
continued the integration for an additional 105 time steps
recording up to 800 extrema (maxima and minima) of the
variable of interest and checking whether pulses repeated or
not. To represent maxima, we use a palette of 17 colors, as

FIG. 2. Experimental reconstruction of the stability regions for the three perturbations considered: (a) control on x; (b) on x3; (c) on the
driving term. White regions represent periodicity domains, black regions represent chaotic domains. Here m ¼ 1.

FIG. 3. Relative effectiveness of the ε vs m phase control
applied to the x term (▾), on the x3 term (▪) and on the driving
term (▴).
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indicated by the color bars in the figures. Patterns with
more than 17 maxima are plotted by recycling the 17 basic
colors modulo 17. The leftmost panel of Fig. 4 shows a
standard Lyapunov stability diagram for the driven Duffing
oscillator with the parametric perturbation applied to the
x term. In this diagram, gray shadings represent periodic
oscillations (negative exponents) while colors denote
chaos (positive exponents). From the figures we can
observe that there are small differences in perturbing chaos
using parametric perturbation on the potential function.
Periodic solutions emerge in regular parabolic structures
with regions where the phase is ineffective up to ε around
0.2 and 0.3, respectively. Increasing further ε the organi-
zation of periodic or chaotic solutions becomes more
and more complex due to parametric perturbation. The

first two figures, as in the experimental case, display fine
structures where periodic solutions are entrained for small
ranges of the phase. When perturbations are applied to
the driving term, periodic solutions appear in the larger
domains but their value is greater with respect to para-
metric ones.
Conclusions.—We investigated the effectiveness of the

phase control technique on realistic prototypical systems
experimentally and numerically, and discovered an optimal
strategy to suppress nonautonomous chaos. We found the
phase control to be much more sensitive when applied to
the linear forcing term in the double-well potential and at
the second harmonic of the driving frequency. With these
judicious choices, one can greatly reduce the amplitude of
the control forcing and successfully achieve effective
control of chaos. It is important to note that, based on
the information of the real-time indicator, a desired oscil-
latory behavior could be stabilized by locking the phase
with an additional feedback loop. Such locking could be the
core of an efficient feedback control, after a learning period
necessary to explore the accessible dynamics. Simulations
using the isospike technique confirmed our experiments,
further revealing the existence of unanticipated structural
complexities in the control parameter space when the
perturbations become strong. Now, an enticing open ques-
tion is to determine how our optimized control performs
when the frequency of the drive and the control are not
locked at integer multiples or submultiple values of m. In
such a case, one needs to deal with quasiperiodic motions
and their bifurcations which is a considerably more
complicated scenario.
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