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We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a
turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures
with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-
Hohenberg models with external driving. When the pumping is high and the external driving is low,
synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high
excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices,
where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of
extreme optical events.
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Rogue waves (RWs) in high seas were once a thing of
legend: massive walls of water tens of meters high, capable
of destroying large ships, appearing from nowhere then
vanishing, leaving no trace of their existence [1]. Because
of the very short lifetime of such extreme events, quanti-
tative studies and simulations of the mechanisms behind
their creation in oceanography have grown only recently
[2,3]. Although the origin of these waves is still under
debate, RWs have been realized in several optical systems
[4] from optical fibers [5] to optical cavities [6,7] and
photonic crystals [8].
Here we investigate a spatiotemporal mechanism involv-

ing vortices in a 2D turbulent state that is capable of
generating RWs, building upon previous work concerning a
singly resonant optical parametric oscillator (OPO) system
with a low amplitude detuned seeding field [9]. For
generality and application to a variety of nonlinear dynami-
cal systems, we consider a forced complex Ginzburg-
Landau (FCGL) equation [10] and a forced complex
Swift-Hohenberg (FCSH) equation, both with external
driving. We focus on the loss of synchronization of the
Adler locked states obtained at large driving amplitudes.
When decreasing the external forcing, oscillations at the
Adler frequency become spatiotemporally unstable, lead-
ing first to a phase and then to an amplitude instability that
forces, locally and randomly, the formation of pairs of
oppositely charged vortices. Since the total power in the
transverse direction remains almost constant throughout,
the nonlinearity pushes the intensity to high spikes close to
interacting vortices, resulting in the rare formation of RWs.
The RWs described here are outside thermodynamic
equilibrium, do not survive in the purely temporal (single
mode) case, and are due to a deterministic, nonlinear, and
vortex-mediated turbulence far removed from a purely
stochastic superposition of optical waves.
To demonstrate the generality of optical RWs in vortex

turbulence we employ a variety of mathematical models:

∂tE ¼ EIN − ð1 − iωÞEþ i∇2Eþ PfðjEj2ÞE
− Γðωþ ϵ∇2Þ2E; ð1Þ

where E is the complex field, EIN is the (real) amplitude of
the external forcing, ω is the frequency difference between
the unperturbed field and the external driver, ∇2 is the
transverse Laplacian, P is the laser pump, and fðjEj2Þ is
1 − jEj2=3 for the laser [11] and sinc2ðjEjÞ for the optical
parametric oscillator [9]. Time is normalized to the photon
decay rate in the optical cavity and space to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lλ=4π

p
,

where L is the cavity length and λ the wavelength. Finally,
Γ is zero for the FCGL model and one for the FCSH case,
where ϵ is a small parameter (here fixed at 0.01) due to the
fast dynamics of atomic variables in lasers [12]. The FCGL
and FCSH models can be applied in many other systems,
e.g., chemical oscillations [13], granular media [14], and
hydrodynamics [15].
The cases of relevance are obtained when the detuning ω

is different from zero. In this case the frequency locked
states that one observes at large driving amplitudes become
unstable upon decreasing the driving EIN . For fixed values
of ω and P, the homogeneous stationary states of Eq. (1)
have a typical S-shaped dependence on E2

IN as displayed,
for example, in Fig. 1, where the stability of these solutions
to perturbations of zero wave vectors is shown. The
uppermost lines in the S-shaped curves of Fig. 1 correspond
to the homogeneous locked states where the external
driving is large enough to overcome the frequency differ-
ence with the injected device. When increasing EIN , a
saddle-node bifurcation heralds the onset of the frequency
and phase locked homogeneous states. When, instead,
decreasing the parameter EIN, the homogeneous solution
loses stability to spatially periodic patterns with a critical
wave vector given by kc ¼

ffiffiffiffi
ω

p
. In Fig. 1 the maximum and

minimum intensities of the hexagonal patterns obtained
numerically [16] when reducing the external driver are
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displayed via a black dotted line. Although the phase of the
pattern is periodically modulated in space, the stationary
character of these pattern solutions demonstrates that they
are locked to the frequency of the injection. A typical
hexagonal structure in the case of the FCGL equation with
finite size input beams is shown in Fig. 2(a). Note that all
the results presented in this Letter remain valid in the limit
of transverse periodic boundary conditions. As the ampli-
tude EIN of the external drive is further reduced (see shaded
area in Fig. 1), spatially periodic patterns become unstable
and a regime of unlocked dynamics sets in [9,10]. Figure 3
shows the temporal evolution of an unstable hexagonal
pattern in an Argand [ImðEÞ versus ReðEÞ] diagram. The

hexagonal pattern [see Fig. 3(a)] is a phase bound solution
that progressively loses stability along a circle in the
Argand diagram corresponding to a phase instability
[Fig. 3(b)]. This phase instability then grows into an
amplitude instability [Fig. 3(c)] that leads to the formation
and annihilation of pairs of oppositely charged vortices [see
Figs. 2(c) and 2(d)] and a regime of spatiotemporal
irregularity similar to the vortex-mediated turbulence
described in Ref. [17] in the CGL model in the absence
of forcing [see Fig. 3(d)]. The helical waves propagating
around the defects act as the driving force behind the
turbulent state. A typical instantaneous intensity distribu-
tion of this turbulent state is presented in Figs. 2(b) and
2(c). The interacting vortices correspond to the localized
regions of zero amplitude (shown in black). Note that the
turbulent dynamics of vortices is deterministically driven
by the spatially coupled nonlinearity and not by the
superposition of random waves typical of optical speckles
[18]. Indeed, in the case of speckle, the field distribution in
the Argand plane has a Gaussian shape as opposed to the
almost circular one shown in Fig. 3(d). There are also
noticeable intrinsic differences in the field correlations [19]
and in the PDFs of the intensity (see below).
To better understand the nature of the turbulent state in

forced models Eq. (1), we consider dynamical solutions
corresponding to unlocked oscillations and their robustness
to spatially dependent perturbations in the FCGL model
(Γ ¼ 0) where analytical predictions are feasible. In the
absence of spatial coupling an approximate limit cycle
trajectory for the field can be found by period averaging
methods, E ¼ A0½cosðϕðtÞÞ þ i sinðϕðtÞÞ� [11,20], where
A2
0 ¼ 3ðP − 1Þ=P, ϕðtÞ is well approximated by its period
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FIG. 1. Stationary intensity of plane waves and their stability
(stable, solid green; unstable with real eigenvalues, dashed blue;
unstable with complex eigenvalues, dash-dotted red) for the
FCGL model with P ¼ 4 and ω ¼ 0.53. The black dotted lines
represent the minima and maxima of stationary hexagonal
patterns, the vertical lines where the optical turbulent state starts
(shaded area). The blue circle is the stationary intensity of the
laser with no injection. The FCSH model displays very similar
results.

(c) (d)

(a) (b)

0

0

2π

Max

FIG. 2. Transverse intensity for (a) hexagonal Turing pattern
and (b),(c) optical vortex-mediated turbulence. (d) Corresponding
transverse phase distribution of two oppositely charged vortices.
Simulations of the FCGL equation with parameters P ¼ 6;ω ¼
0.77; EIN ¼ 1.00 (a) and EIN ¼ 0.95 (b)–(d); see Ref. [16]. The
beam radius is 10π. Panels (c) and (d) correspond to the area of
the white square in (b).
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FIG. 3. Field distributions in the Argand plane of the unstable
hexagonal pattern at t ¼ 0 (a), during phase instability (t ¼ 183)
(b), in a regime of amplitude instability (t ¼ 236) (c), and in a
turbulent state (t ¼ 472) (d). The green circle in (d) is the Adler
limit cycle. Simulations of the FCGL equation with the same
parameters as Fig. 1 and EIN ¼ 0.60.
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average Ωtþ π, with Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

L

p
and ωL ¼ EIN=A0.

When Ω is real, i.e., in the absence of locked states, the
trajectory is the phase-drift solution of the Adler equa-
tion [21], dtϕ ¼ ω − ωL sinðϕðtÞÞ. Such a solution is
clearly phase unbound and is superimposed onto the
Argand diagram in the turbulent regime of Fig. 3(d) to
show that its underlying dynamics is ruled by the unlocked
state. The accuracy of the approximate solution has been
checked for a wide range of EIN values in the FCGLmodel.
The excursions in intensity do not exceed 10% while those
in frequency are well within 1%. We have then proceeded
to study the stability of the spatially synchronized oscil-
lation by including spatial coupling in the FCGL model.
The stability eigenvalues of the spatially synchronized limit
cycle are given by

λ� ¼ −ðP − 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − 1Þ2 − ðω − k2Þ2

q
; ð2Þ

where k is the spatial wave vector. At the critical wave
vector for pattern formation kc ¼

ffiffiffiffi
ω

p
, the stability λþ is

marginal but perturbations due to the approximate nature of
E induce a slow instability of the synchronous oscillation.
The eigenvector associated with λþ is along the limit cycle,
again demonstrating a phase instability. As mentioned
earlier, this phase instability grows into an amplitude
instability and then into vortex-mediated turbulence as
demonstrated numerically in Fig. 4, starting from low
amplitude noise. A homogeneous zero state with added
noise quickly evolves towards the unstable limit cycle
[from 0 to 4 in Fig. 4(a)]. The limit cycle dynamics first
synchronizes the spatial oscillations [see the narrow line at
t ¼ 90 in Fig. 4(b)] and then moves towards the vortex
turbulence state via phase [Fig. 4(b)] and amplitude [see
Fig. 3(c)] instabilities. We outline that the mechanism of
spontaneous vortex creation in the FCGL and FCSH
models is not trivial. In contrast with the CGL model,
stationary vortex solutions are not possible in driven
systems like Eq. (1) as all locked states have bound phases

around that of the injection. However, at low driving
amplitudes, moving vortices and vortex-mediated turbu-
lence in Eq. (1) are possible due to the Adler unlocked
dynamics of the limit cycle trajectory. It is known [22] that
the adiabatic elimination of the polarization variable
introduces an all wave vector instability of the spatially
homogeneous state below the point where the linear
stability of the lower branch of the S-shaped homogeneous
state predicts complex conjugate eigenvalues (see Fig. 1).
This feature, in principle, may have serious consequences
in the turbulent regimes. A second important consequence
of our analysis, however, is that Eq. (1) for Γ ¼ 0 displays a
very fast dynamics that takes the system towards the limit
cycle where large wave vector instabilities are promptly
eliminated (see Fig. 4). The large wave vector instability of
the lower branch of the homogeneous stationary states is
not present in the FCSH model when Γ ¼ 1.
This mechanism for vortex turbulence is essential for the

generation of RWs in externally driven systems described
by the spatiotemporal dynamics of Eq. (1). These systems
are outside thermodynamic equilibrium, do not display
relaxation oscillations, and present a delicate balance
between the energy input and the losses (the pump P,
injection EIN , nonlinearity fðjEj2Þ, and output mirror).
During the turbulent evolution, the total power P remains
almost constant at values close to those of the laser with no
injection [see Fig. 5(a)]. By considering the energy density
and the energy flux of the FCGL equation [23], the time
evolution of the power is given by

∂P
∂t ¼ 2

Z �
EINReðEÞ þ

�
P − 1 −

P
3
jEj2

�
jEj2

�
dxdy;

ð3Þ

where ðx; yÞ is the transverse plane. For the approximate
limit cycle solution the power P is conserved at the value of
πw2

0A
2
0, where w0 is the beam width of the input laser. In the

turbulent state, however, maintaining an almost constant
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FIG. 4. Field distributions in the Argand plane for the FCGL
equation with the same parameters as Fig. 1 and EIN ¼ 0.70.
(a) t ¼ 0 (black), t ¼ 0.40 (red), t ¼ 0.75 (blue), and t ¼ 1.4
(green). (b) t ¼ 90 (black), t ¼ 256 (red), t ¼ 280 (blue), and
t ¼ 314 (green).
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FIG. 5. (a) Time evolution of the power for three values of the
pump (P ¼ 2, 4, and 5) and for the FCGL (solid lines) and FCSH
(dashed lines) models during vortex turbulence. The horizontal
lines are the predictions from the approximate Eq. (3). (b) RW
spike in the transverse intensity for the FCGL model with
P ¼ 6;ω ¼ 0.77; EIN ¼ 1.00. The peak intensity is 42.22, the
average is 4.93, and the standard deviation is 1.57 (all in
normalized units).
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power in the presence of moving vortices of zero intensity
implies the simultaneous appearance of large amplitude
spikes. If the vortex density is large, multivortex collisions
can occur with the production of large, short-lived spikes in
the intensity [see Fig. 5(b)]. Short-lived large intensity
spikes are rare but possible events, fitting the characteristics
of RWs. The particular shape and symmetry of these spikes
is crucially determined by the number and position of the
surrounding vortices, a feature that is unique to this
particular mechanism of RW formation. RWs in single
transverse mode class-B lasers with injected signals have
been observed in Ref. [7] but due to relaxation oscillations
and not to 2D vortex turbulence. In fact, without spatial
coupling due to diffraction, no RWs can be observed in
systems described by Eq. (1). To characterize our spatio-
temporal RWs, we use a commonly accepted definition of
statistically rare events [4,7,9]; i.e., if the intensity of the
field at a spatial point over a long period of time is greater
than the mean wave height plus 8 standard deviations,
then the wave can be classified as an extreme event
or RW, similarly to the significant peak intensity
method [4].
In Fig. 6 we show PDFs for different regimes of vortex

turbulence. The wave statistics is well approximated by a
Gaussian fit when the pump intensity is low (blue solid line
in Fig. 6). At higher pump intensities the long-tailed PDFs
show mass generation of RWs. Here the statistics changes
drastically and is very well approximated by a Weibull
distribution [2,16] (red dashed line in Fig. 6). Note that
non-Gaussian PDFs cannot be replicated by superpositions
of random waves. We also note that the RWs in vortex
turbulence demonstrated in Fig. 6 are different from those
due to vorticity in models of inviscid fluids [3]. The CGL

and CSH models have been shown to be equivalent to
the flow of a compressible and viscous fluid with density
ρ ¼ jEj2 and velocity v ¼ ∇ϕ, where ϕ is the phase of the
field [24]. In the case of our forced systems, ∇ × v remains
extremely close to zero in the locations where RWs are
observed. We conclude that our RWs are due to the
interaction of free vortices in the absence of vorticity.
Finally, we show in the inset of Fig. 6 the wide parameter

region where we observe RWs induced by vortex turbu-
lence in systems with external driving of the FCGL kind.
Very similar results have been obtained for the FCSH
model and different nonlinearities such as those of the
singly resonant OPO, thus demonstrating the universality
of the phenomenon.
In conclusion, we demonstrate a mechanism for pro-

ducing RWs in the transverse area of externally driven
nonlinear optical devices via vortex turbulence. Given the
universality of our model, this mechanism should be
observable in a large variety of systems. Models of lasers
with injected signal, where the invariance of the Adler limit
cycle is well known [11,25], can be easily extended to
semiconductor media [26] and to class-B lasers, thus
including the largest majority of solid-state lasers.
Outside optics, vortex-mediated turbulence without
driving has been observed in nematic liquid crystals
[27], chemical reactions [28], and fluid dynamics [29].
In the unlocked regime of these systems with driving,
vortex turbulence can excite RWs and lead to the formation
of highly inhomogeneous fields with non-Gaussian
statistics.
The prototype model used to describe RWs is the

nonlinear Schrödinger (NLS) equation [2,4,5]. The
FCGL and FCSH models studied here are active, noncon-
servative systems outside thermodynamic equilibrium
where many of the methods developed for the NLS cannot
be applied. In the NLS equation, as well as in the CGL and
CSH equations, stationary vortex solutions are possible
although mainly unstable. In the presence of forcing,
vortices can only exist in dynamical states. It is exactly
in these situations that we have demonstrated RWs close to
regions of interaction of turbulent vortices. Because of
universality, suitably perturbed NLS models may also
display these features.
Unlike RWs in the longitudinal direction [4], the aspect

ratios required for transverse RWs induced by 2D vortex
turbulence are extremely small (typical input beams
have diameters less than 1 mm) and the statistics
require times of the order of hundreds of μs. The small
aspect ratio, the full 2D character, and the quick dynamics
represent the major advantages of transverse optical devices
in studying the generation and control of RWs with
applications, by universality, in hydrodynamics and
oceanography.
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FIG. 6. Intensity PDFs for the FCGL model, P ¼ 2;ω ¼ 0.3,
EIN ¼ 0.24 (purple triangles) with Gaussian fit (blue line) and
P ¼ 8;ω ¼ 2.4, EIN ¼ 3.40 (green stars), and the sinc2 model,
P ¼ 8;ω ¼ 1, EIN ¼ 1.48 (black circles) with Weibull fit (red
dashed line) [16]. The vertical black line is the threshold for
defining waves as an extreme event. Inset: Parameter region for
RWs (red area) in the FCGL model. The upper curve is the pattern
to vortex-mediated turbulence transition, the lower curve the
turbulence to target pattern transition. No RWs are observed
below the red dashed line.
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