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We derive the first ever on-shell recursion relations applicable to effective field theories. Based solely on
factorization and the soft behavior of amplitudes, these recursion relations employ a new rescaling
momentum shift to construct all tree-level scattering amplitudes in the nonlinear sigma model, Dirac-Born-
Infeld theory, and the Galileon. Our results prove that all theories with enhanced soft behavior are on-shell
constructible.
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Introduction.—The modern S-matrix program exploits
physical criteria like Lorentz invariance and unitarity to
construct scattering amplitudes directly and without the
aid of a Lagrangian. At tree level, many S matrices are
constructible via on-shell recursion, which elegantly enc-
odes factorization as a physical input. Originally discov-
ered in the context of gauge theory [1], on-shell recursion
relations were soon extended to gravity theories [2] and,
eventually, all renormalizable and some nonrenormalizable
theories [3,4]. Subsequently, these developments led to
progress in alternative formulations of quantum field
theory, e.g., in the context of planar N ¼ 4 super Yang-
Mills theory through the positive Grassmannian [5] and
Amplituhedron [6]. There has, however, been remarkably
little progress towards a fully on-shell formulation of
effective field theories. Such an omission is unfortunate,
as effective field theories provide a universal description of
spontaneous symmetry breaking in all branches of physics,
ranging from superconductivity to the strong interactions
[7] to cosmology [8].
The aim of this Letter is to fill this gap. We derive a new

class of recursion relations that fully construct the S
matrices of certain scalar effective field theories by har-
nessing an additional physical ingredient: the vanishing of
amplitudes in the soft limit. This approach is logical
because the soft behavior of the S matrix actually encodes
the interactions and symmetries of the corresponding
effective field theory [9], thus giving a theory classification
purely in terms of on-shell data. Our new recursion
relations apply to any theory with enhanced soft limits,
including the nonlinear sigma model, Dirac-Born-Infeld
theory, and the Galileon [10].
Recursion and factorization.—On-shell recursion rela-

tions act on an initial seed of lower-point on-shell ampli-
tudes to bootstrap to higher-point. Criteria like Lorentz
invariance—which prescribes strict little group covariance
properties of the amplitude [11]—are manifest provided
the initial amplitudes and recursion relation maintain these
properties at each step.

The property of factorization, on the other hand, enters
less trivially. To access multiple factorization channels, the
BCFW recursion relations [1] employ a complex deforma-
tion of two external momenta,

p1 → p1 þ zq and p2 → p2 − zq; ð1Þ
where q is fully fixed up to rescaling the on-shell conditions
q2¼ q ·p1¼ q ·p2¼ 0. The original amplitude is extracted
from the complexified amplitude AnðzÞ by contour inte-
grating over an infinitesimal circle centered around z ¼ 0.
Cauchy’s theorem then yields a new expression for the
original amplitude,

Anð0Þ ¼
1

2πi

I
dz
z
AnðzÞ ¼ −

X
I

Res
z¼zI

�
AnðzÞ
z

�
; ð2Þ

where I labels factorization channels at which the inter-
mediate momentum PIðzÞ goes on shell, so zI is defined by
PIðzIÞ2 ¼ 0. The residue at each pole is

−Res
z¼zI

�
AnðzÞ
z

�
¼ AnIðzIÞ

1

P2
I
An̄IðzIÞ; ð3Þ

establishing a recursion relation in terms of the lower-point
amplitudes AnI and An̄I where nI þ n̄I ¼ nþ 2.
The above derivation fails when there is a nonzero

residue at z ¼ ∞. However, this boundary contribution
is calculable in certain circumstances [12] and moreover
there exist any number of generalizations of BCFW
recursion for which the amplitude vanishes at large z [3,4].
Ultimately, this is not surprising because the boundary term
literally encodes a class of factorization channels [13].
Since BCFW recursion and its extensions apply to all
renormalizable and some nonrenormalizable theories [3,4],
the corresponding S matrices are completely fixed by
Lorentz invariance and factorization.
Recursion and soft limits.—In effective field theories,

BCFW recursion and its generalizations are hindered by a
nonzero boundary term at z ¼ ∞. (In previous work [14],
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we derived semi-off-shell recursion relations for the non-
linear sigma model, though these methods do not general-
ize straightforwardly.) Naively, this is attributable to the
divergent behavior of nonrenormalizable interactions at
large momenta, but this is plainly false in gravity theories,
which have terrible high energy behavior but are perfectly
constructible via BCFW recursion. For effective field
theories, the problem is simply more fundamental: ampli-
tudes are not just fixed by factorization, and additional
information is needed. In hindsight this is obvious since
high-order contact operators in effective field theories
are typically related to low-order contact operators not
by factorization but by symmetries.
Since existing recursive technology already exploits

the amplitudes’ singularities, a natural candidate for new
physical information is the amplitudes’ zeros. The former
are dictated by factorization while the latter require special
kinematics at which the amplitude vanishes. Amplitudes
in effective field theories typically vanish in the limit that
p → 0 for the momentum of an external particle, so there
exists a classification of theories according to the degree
of their soft behavior [9], σ, where

An ∼ pσ for p → 0; ð4Þ
and σ ≥ 1 is an integer. As shown in Ref. [9], higher values
of σ correspond to more symmetry in the theory.
To exploit Eq. (4) we need a momentum shift that probes

the soft limits of external legs. This is not accomplished by
the BCFW shift in Eq. (1), which probes collinear but not
soft behavior. For our purposes we define a “rescaling
shift” on all external legs,

pi → pið1 − zaiÞ; ð5Þ
where the ai are defined up to an overall rescaling and

Xn
i¼1

aipi ¼ 0; ð6Þ

to maintain momentum conservation. For n < Dþ 1, a
generic set of momenta pi are linearly independent, so the
only solution to Eq. (6) has all ai equal, corresponding to
total momentum conservation. Since this momentum shift
simply rescales of all the momenta, it is not useful for
recursion. For n ≥ Dþ 1, Eq. (6) is solved by

ai ¼ ð−1Þijp1 � � �pi−1piþ1 � � �pDþ1j ð7Þ
for i ¼ 1;…; Dþ 1 with all other ai ¼ 0. When
n ¼ Dþ 1, this solution again trivializes to ai all equal,
but for n > Dþ 1 it is always possible to find distinct ai
provided pi represent a general kinematic configuration.
The scaling shift in Eq. (5) is purposely chosen so that

AnðzÞ ∼ ð1 − zaiÞσ for z → 1=ai; ð8Þ
due to Eq. (4), thus recasting the soft behavior as a degree σ
zero of the amplitude. To compute the amplitude we

apply Cauchy’s theorem to a contour encircling all poles
at finite z I

dz
z
AnðzÞ
FnðzÞ

¼ 0; ð9Þ

where the denominator factor is defined to be

FnðzÞ ¼
Yn
i¼1

ð1 − aizÞσ: ð10Þ

The integrand of Eq. (9) is engineered to be nonsingular at
z ¼ 1=ai since the poles introduced by FnðzÞ are cancelled
by zeroes of the amplitude. Thus, the integrand of Eq. (9)
has poles from factorization channels only, so in analogy
with BCFW, the amplitude is

Anð0Þ ¼ −
X
I

Res
z¼zI�

�
AnðzÞ
zFnðzÞ

�
; ð11Þ

where I again labels factorization channels. In contrast
with BCFW, each factorization channel in PIðzÞ yields
two poles zI� corresponding to the roots of

P2
I þ 2PI ·QIzþQ2

I z
2 ¼ 0; ð12Þ

where PIðzÞ ¼ PI þ zQI and where

PI ¼
X
i∈I

pi and QI ¼ −
X
i∈I

aipi: ð13Þ

Each residue is a product of lower-point amplitudes which
can be rearranged into a new recursion relation,

Anð0Þ¼
X
I

1

P2
I

AnIðzI−ÞAn̄IðzI−Þ
ð1− zI−=zIþÞFnðzI−Þ

þðzIþ↔zI−Þ: ð14Þ

Again, we assume a vanishing boundary term at z ¼ ∞,
which is achievable because FnðzÞ substantially improves
the large z behavior of the integrand of Eq. (9). In the next
section we determine the precise conditions under which
the boundary term is zero.
Criteria for on-shell constructibility.—Next, we deter-

mine the conditions under which the boundary term
vanishes and the new recursion relation in Eq. (14) applies.
Under the rescaling shift in Eq. (5), all momenta scale as z
at large z. Consequently, if the n-point amplitude scales
with m powers of momenta, then AnðzÞ ∼ zm and FnðzÞ ∼
nσ so

AnðzÞ
FnðzÞ

∼ zm−nσ: ð15Þ

Demanding falloff at z ¼ ∞ implies that

on-shell constructible ↔ m=n < σ: ð16Þ
At the level of the contact terms this is exactly the
condition, that the soft limit of the amplitude is enhanced
beyond the naive expectation given by the number of
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derivatives per field. So the set of amplitudes with special
soft behavior are on-shell constructible.
To lift the criterion for on-shell constructibility from

amplitudes to theories, we adopt the ðρ; σÞ classification of
scalar effective field theories presented in Ref. [9]. In
particular, for operators of the form ∂mϕn, we define a
derivative power counting parameter

ρ ¼ m − 2

n − 2
; ð17Þ

so that an amplitude of a given ρ can factorize into two
lower-point amplitudes of the same ρ. The simplest
effective theories have a fixed value of ρ but mixed ρ
theories also exist. The derivative power counting param-
eter ρ in Eq. (17), together with the soft limit degree σ
defined in Eq. (4) define a two parameter classification of
scalar effective field theories.
In terms of the ðρ; σÞ classification, the criterion of on-

shell constructibility in Eq. (16) becomes

ðρ − 1Þ < ðσ − 1Þ
�

1

1 − 2=n

�
: ð18Þ

For an effective field theory to be on-shell constructible
requires that recursion relations apply for arbitrarily high n.
In the large n limit, Eq. (18) yields a simple condition for
on-shell constructibility,

on-shell constructible ↔ ρ ≤ σ and ðρ; σÞ ≠ ð1; 1Þ;
ð19Þ

which precisely coincides with the class of theories that
exhibit enhanced soft behavior.
Examples of on-shell constructible theories are the non-

linear sigma model ðρ; σÞ ¼ ð0; 1Þ, Dirac-Born-Infeld
theory ðρ; σÞ ¼ ð1; 2Þ, and the general or special Galileon
ðρ; σÞ ¼ ð2; 2Þ=ð2; 3Þ [9]. (Theories with higher shift sym-
metries [15] violate this bound.) Among these theories, we
dub those with especially good soft behavior, ρ ¼ σ − 1,
“exceptional” theories. Exceptional theories have a very
interesting property: their soft behavior is not manifest term
by term in the Feynman diagram expansion, and is only
achieved after summing all terms into the amplitude. Note
the close analogywith gauge invariance inYang-Mills theory
or diffeomorphism invariance in gravity, which similarly
impose constraints among contact operators of different
valency. The exceptional theories also play a prominent
role in the scattering equations [16] and ambitwistor string
theories [17], suggesting a deeper connection between these
approaches and recursion.
For the exceptional theories, Eq. (19) is more than

satisfied, yielding better large z falloff than is even needed
for constructibility. Thus, our recursion relations generate
so-called bonus relations defining identities among ampli-
tudes. In principle this can be exploited, for example by
introducing factors of PiðzÞ2 into the numerator of the

recursion relation to eliminate certain factorization chan-
nels from the recursion relation. This is an interesting
possibility we leave for future work.
Finally, let us address a slight caveat to the z scaling

arguments discussed above. While all momenta scale as z at
large z, it is a priori possible that cancellations modify the
naive scaling of An ∼ zm for an amplitude with m deriv-
atives. This is conceivable because the ai parameters in the
momentum shift are implicitly related by the momentum
conservation condition in Eq. (6). In particular, our recur-
sions would fail if there were cancellations in propagator
denominators such that they scaled less severely than z2.
That there is always a choice of ai for which no such
cancellations arise can be shown via proof by contradiction.
In particular, assuming no such choice exists implies that
cancellations occur for all values of ai. But we can always
perturb a given choice of ai away from such a cancellation
point by applying an additional infinitesimal momentum
shift on a subset of Dþ 1 external legs as defined in
Eq. (7). Thus the starting assumption is false and there are
generic values of ai for which An ∼ zm scales as expected.
Example calculations.—In this section we apply our

recursion relations to scattering amplitudes in various effec-
tive field theories. We begin with amplitudes in exceptional
theories. Curiously, the six-point amplitudes in the nonlinear
sigma model, Dirac-Born-Infeld, and the special Galileon,
are, term by term, the “square” and “cube” of each other,
reminiscent of the result ofRef. [16].Afterwards,we consider
the general Galileon, which is marginally constructible.
Nonlinear sigma model: ðρ; σÞ ¼ ð0; 1Þ: As shown in

Ref. [18], flavor-ordered scattering amplitudes in the non-
linear sigma model vanish in the soft limit. We derive the
flavor-ordered six-point amplitude A6 by recursing the
flavor-ordered four-point amplitude,

A4 ¼ s12 þ s23: ð20Þ
Since A6 has three factorization channels, the recursion
relation in Eq. (14) takes the form

A6 ¼ Að123Þ
6 þ Að234Þ

6 þ Að345Þ
6 ; ð21Þ

corresponding to when P123, P234, and P345 go on shell.
Consider first the pole at P2

123ðzÞ ¼ 0, whose roots are

z� ¼−ðP123 ·Q123Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP123 ·Q123Þ2−P2

123Q
2
123

p
Q2

123

: ð22Þ

Plugging Eq. (13) into Eq. (14) we obtain

Að123Þ
6 ¼ B

P2
123

X
ij∈f12;23g
kl∈f45;56g

Cijkl þ ðzþ ↔ z−Þ; ð23Þ

where for later convenience we have defined

Cijkl ¼
sijsklQ

m∉fi;j;k;lgð1 − amz−Þ
; ð24Þ
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and B ¼ ð1 − z−=zþÞ−1. We observe that Að123Þ
6 is equal to

the residue of a new function

Að123Þ
6 ¼ −Res

z¼z�

�
(s12ðzÞ þ s23ðzÞ)(s45ðzÞ þ s56ðzÞ)

zP2
123ðzÞF6ðzÞ

�

¼ ðs12 þ s23Þðs45 þ s56Þ
P2
123

þ
X6
i¼1

Res
z¼zi

�
(s12ðzÞ þ s23ðzÞ)(s45ðzÞ þ s56ðzÞ)

zP2
123ðzÞF6ðzÞ

�
;

ð25Þ
which we have recast in terms of residues at z ¼ 0 and
zi ¼ 1=ai by Cauchy’s theorem. Summing over factoriza-
tion channels, we simplify the zi ¼ 1=ai residues to

X6
i¼1

Res
z¼zi

s12ðzÞ þ � � �
zF6ðzÞ

¼ −ðs12 þ � � �Þ; ð26Þ

where ellipses denote cyclic permutations and we have
again applied Cauchy’s theorem. Our final answer is

A6 ¼
�ðs12 þ s23Þðs45 þ s56Þ

P2
123

þ � � �
�
− ðs12 þ � � �Þ; ð27Þ

which is the expression from Feynman diagrams.
Dirac-Born-Infeld Theory: ðρ; σÞ ¼ ð1; 2Þ: Amplitudes

in Dirac-Born-Infeld theory are computed similarly with
the notable exception that there is no flavor ordering,
so all expressions are permutation invariant. The four-point
amplitude takes the form

A4 ¼ s212 þ s223 þ s213; ð28Þ
which is the “square” of Eq. (20). The six-point scattering
amplitude takes the form

A6 ¼ Að123Þ
6 þ � � � ; ð29Þ

where the ellipses denote permutations, totaling to the ten
factorization channels of the six-point amplitude. As in
Eq. (22), each factorization channel has two roots in z, so
recursion yields

Að123Þ
6 ¼ B

P2
123

X
i;j∈f1;2;3g
k;l∈f4;5;6g

C2
ijkl þ ðzþ ↔ z−Þ; ð30Þ

which like before can be shown to be equal to the Feynman
diagram expression. Interestingly, Eq. (30) is precisely the
“square” form of Eq. (23).
Special Galileon: ðρ; σÞ ¼ ð2; 3Þ: Next, consider the

special Galileon [9,16], whose existence was conjectured
in Ref. [9] due to the existence of an Smatrix with the same
derivative power counting as that in the Galileon but with
even more enhanced soft behavior (at the same time the

amplitudes in this theory were obtained using scattering
equations [16]). Shortly after this work it was shown in
Ref. [19] that this theory is a subset of the Galileon theories
with a higher degree shift symmetry related by an S-matrix
preserving duality [20,21].
Since the Galileon does not carry flavor, its amplitudes

are permutation invariant. The four-point amplitude is

A4 ¼ s312 þ s323 þ s313; ð31Þ

which is the cube of Eq. (20). Permutation symmetry
implies that the amplitude is again of the form of Eq. (29),
except here we find

Að123Þ
6 ¼ B

P2
123

X
i;j∈f1;2;3g
k;l∈f4;5;6g

C3
ijkl þ ðzþ ↔ z−Þ; ð32Þ

which is the cube of Eq. (23).
General Galileon: ðρ; σÞ ¼ ð2; 2Þ: Finally, let us compute

amplitudes in the general Galileon. As shown in Ref. [21],
each n-point vertex of the D-dimensional Galileon is a
Gram determinant,

Vn ¼ Gðp̂1; p2;…; pnÞ ¼ Gðp1; p̂2;…; pnÞ ¼ � � � ; ð33Þ

which is simply the determinant of the matrix sij with the
row and column corresponding to the hatted momentum
removed. The Gram determinant is by construction sym-
metric in its arguments. Furthermore,

Gðλp1; p2;…; pnÞ ¼ λ2Gðp1; p2;…; pnÞ; ð34Þ

so crucially, the rescaling shift in Eq. (5) acts homoge-
nously on the vertex. This allows for a major simplification
of our recursion relation. Here we define the seed ampli-
tudes for the recursion to be lower-point amplitudes
for n ¼ 4; 5;…; Dþ 1.
For a concrete example, we now apply our new recursion

relations to the eight-point amplitude A8 for the Galileon
with just a five-point vertex in D ¼ 4. The amplitude
factorizes into two five-point amplitudes which are
simply vertices, e.g., A5 ¼ V5 ¼ Gðp1; p2; p3; p4Þ and
A5̄ ¼ V 5̄ ¼ Gðp5; p6; p7; p8Þ, with the intermediate leg
corresponding to the missing column in the Gram deter-
minant. We find that

A5ðzÞA5̄ðzÞ
F8ðzÞ

¼ V5ðzÞV 5̄ðzÞ
F8ðzÞ

¼ V5ð0ÞV 5̄ð0Þ; ð35Þ

applying the homogeneity property from Eq. (34) to cancel
factors of ð1 − aizÞ2 in the numerator and denominator.
Summing over factorization channels yields
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A8 ¼
B

P2
1234

V5ð0ÞV 5̄ð0Þ
ð1 − zI−=zIþÞ

þ ðzIþ ↔ zI−Þ þ � � �

¼ Gðp1; p2; p3; p4Þ
1

P2
1234

Gðp5; p6; p7; p8Þ þ � � � ;

ð36Þ

where the ellipses denote permutations. This expression is
manifestly equal to the Feynman diagram expression.
Note the similarity between the above manipulations and

the derivation of the Cachazo-Svrcek-Witten (CSW) rules
for Yang-Mills amplitudes. While MHV amplitudes are
invariant under square bracket shifts, the Galileon vertices
literally rescale under the rescaling shift. Just as the CSW
rules can be proven using the Risager three-line momentum
shift [22], the Feynman diagram expansion of the general
Galileon can be proven using our new recursion relations.
Outlook.—We have derived a new class of recursion

relations for effective field theories with enhanced soft
limits, i.e., the nonlinear sigma model, Dirac-Born-Infeld
theory, and the Galileon. Like gauge and diffeomorphism
invariance, soft behavior dictates nontrivial relations
among interactions of different valencies.
Our results open many avenues for future work [23].

In particular, while we have considered fixed ρ theories
here, it should be straightforward to generalize our
results to mixed ρ theories such as the DBI Galileon
[24]. Also interesting would be to extend our results
to theories with universal albeit nonvanishing soft
behavior. For example, in the conformal Dirac-Born-
Infeld model—corresponding to the motion of a brane in
AdS—the soft limits of an n-point amplitude are not zero
but related to the derivative of the ðn − 1Þ-point ampli-
tude with respect to the AdS radius parameter [23]. Last
but not least, there is the question of how to utilize
collinear or double-soft limits of amplitudes (for recent
discussion see Ref. [25]).
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