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Yang-Yang (YY) and singular diameter critical anomalies arise in exactly soluble compressible cell gas
(CCG) models that obey complete scaling with pressure mixing. Thus, on the critical isochore ρ ¼ ρc,
~Cμ≔− Td2μ=dT2 diverges as jtj−α when t∝T−Tc → 0− while ρd−ρc∼jtj2β where ρdðTÞ ¼ 1

2
½ρliq þ ρgas�.

When the discrete local CCG cell volumes fluctuate freely, the YY ratio Rμ ¼ ~Cμ=CV may take any value

−∞ < Rμ < 1
2
but “anticorrelated” free volumes are needed for Rμ > 0. More general decorated CCGs,

including “hydrogen bonding” water models, illuminate energy-volume coupling as relevant to Rμ.
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In 1964 Yang and Yang [1] discovered a serious defect
of the standard lattice gas (SLG) model, alias the Ising
model, for studying criticality in fluids. The same defect,
furthermore, characterizes Landau-Ginzburg-Wilson or
field theory (FT) models. Explicitly, consider an upper
critical point at which the isochoric specific heat CVðTÞ
diverges as jtj−α when t≡ ðT − TcÞ=Tc → 0− with α≃
0.109 in d ¼ 3 dimensions. Then, if pσðTÞ and μσðTÞ are
the pressure and chemical potential on the gas-liquid phase
boundary, Yang and Yang proved CV ¼ ~Cp þ ~Cμ, where
~Cp ¼ Tp00

σv and ~Cμ ¼ −Tμ00σ while v ¼ 1=ρ is the specific
volume (and 0 denotes d=dT). On the critical isochore ρ ¼
ρc one should thus expect ~Cp ¼ Ap=jtjα and ~Cμ ¼ Aμ=jtjα.
However, in the SLG and its usual variants μσðTÞ is

completely analytic. This implies that the Yang-Yang (YY)
ratio

Rμ ¼ Aμ=ðAp þ AμÞ ð1Þ
vanishes identically with only p00

σ diverging. But is this
reasonable? Yang and Yang thought not [1].
This question was finally answered negatively [2,3]

when careful analysis of data for propane yielded Rμ ≃
0.56 whereas CO2 data indicated a clearly distinct value,
Rμ ≃ −0.3 [2–5]. Simulations suggest Rμ ≃ −0.04 for a
hard-core square-well fluid butRμ ≃ 0.26 for the restricted
primitive model electrolyte (hard sphere 1:1) [6].
To accommodate Rμ ≠ 0 the traditional scaling theories

for criticality need modification since, like the SLG, they
entail Rμ ≡ 0. This has been accomplished in what is now
termed complete scaling, an approach that contemplates
a comprehensive set of thermodynamic critical anomalies
associated with a nonvanishing YY ratio [7]. Thus a remar-
kable new term is an A2βjtj2β correction to the diameter of
the coexistence curve, ρd ¼ 1

2
½ρliq þ ρgas�. Asymptotically

close to criticality this term dominates a long sought [8] but

weak A1−αjtj1−α singularity [9,10] since 2β≃ 0.652 < 1 −
α≃ 0.891 for d ¼ 3 [2,7].
Such features reflect an underlying gas-liquid asymmetry

that contrasts with the situation for, e.g., the ferromagnetic-
paramagnetic phase transition since the spontaneous mag-
netization curve—the analog of the gas-liquid coexistence
curve—displays an obvious symmetry upon magnetic field
reversal. Thus, rather than being a technicality, the issue
raised by Yang and Yang addresses a most basic question
regarding the precise formulation of scaling for asymmetric
fluid criticality [2,7].
The predictions of complete scaling have been tested

against experiments [4,5,9,10] and simulations [6,10].
Furthermore, implications for asymmetry at the mean-field
level [9,11], for surface criticality and inhomogeneous
systems [12], for criticality in fluid mixtures [13], for the
dielectric constant [14], for the refractive index [15], and for
the osmotic compressibility [16] have been explored.
Nevertheless, complete scaling remains a phenomeno-

logical theory with no obvious limits on the value of Rμ

and no physical insight regarding the origin, magnitude,
or even the sign of this basic ratio. The extensive class
of exactly soluble compressible cell gas (CCG) models
introduced here, however, shows that Yang-Yang and
related critical anomalies arise as soon as local volume
fluctuations in fluids are recognized [17,18].
To describe the CCG models one must note that

complete scaling entails three basic scaling fields, ~t, ~h,
and ~p, in which all thermodynamic fields, T, μ, and p,
enter (or mix) explicitly [2,7,9]. Specifically, if one writes
μ
̬ ≡ ðμ − μcÞ=kBT and p

̬ ≡ ðp − pcÞvc=kBT, one needs to
leading order

~h ¼ μ
̬
− k1t− j2p

̬
; ~t ¼ t− l1μ

̬
− j1p

̬
; ~p ¼ p

̬
− k0t− μ

̬
;

ð2Þ
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where the nonuniversal coefficients k0, k1, j2, etc., satisfy
the relations kBk1 ¼ μ0σc − j2p0

σcvc while kBk0 ¼ Scvc with
S being the entropy [7]. Furthermore one finds [2,7]

j2 ¼ −Aμ=Ap and Rμ ¼ −j2=ð1 − j2Þ; ð3Þ

which implies that the presence of pressure in the ordering
field, ~h, plays the crucial role in generating a nonzero
Yang-Yang ratio. Indeed, one also obtains A2β ¼ RμB2,
where the coexistence curve is described by ½ρliq − ρgas�vc ≈
2Bjtjβ [7]. But pressuremixing also leads toA1−α∼ ðl1þ j1Þ.
It transpires (although not apparently noted previously)

that the second law implies the restrictions

−∞ < j2 < 1; −∞ < Rμ < 1 and Ap > 0: ð4Þ

Explicitly, these follow from (1), (3), and Eq. (3.23) of [7]
stating B ¼ QBð1 − j2Þ, while thermodynamics demands
CV > 0, B > 0, and QB > 0 [7].
To continue, consider the SLG interpreted as a continuum

cell model: at each of theN sites of a d-dimensional lattice
of coordination number c there is a cell of volume v0 that
may be empty or occupied by one particle that moves
freely throughout space; but instead of a normal pair
potential, φðri − rjÞ, particles in adjacent cells interact only
via a discrete energyφmin ¼ −ε0 [19]. Repulsive or excluded
volume effects may be taken into account by supposing that
a particle in a cell can explore only a “free volume,”
say, _v0 < v0.
Now, to generate a compressible cell gas suppose that each

cell can, individually, assume n discrete values, 0 < vk ≤ v0,
but with distinct free volumes _vk > 0 if occupied (or, more
generally, v̈k if doubly occupied, etc.). To analyze such a
model onemust, in place of a standard canonical or (N,V, T)
ensemble, employ a great grand canonical or (μ, p, T)
ensemble [20]. The partition function then embodies sums
over particle numbers, energy levels, and volume fluctua-
tions with corresponding Boltzmann factors eμ̄N , e−β̄E, and
e−p̄V , where β̄ ¼ 1=kBT, p̄ ¼ β̄p and μ̄ ¼ β̄μ − lnðΛd

T=v0Þ
with ΛT ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=mkBT
p

for N particles of mass m and
overall energy E.
In the simplest models, say, CCG0, the free volumes

_vk ≤ vk fluctuate independently. One then easily finds [21]
an exact analytic mapping into the corresponding SLG.
Specifically, in terms of the isobaric volume-fluctuation
sums

Slmðp̄Þ ¼ n−1
X

n

k¼1

vlk _v
m
k exp ð−p̄vkÞ; ð5Þ

and the standard Ising variables [22] h ¼ H=kBT,
K ¼ J=kBT, and f̄ ¼ −F=kBT, one has

2h ¼ μ̄þ 1
2
cβ̄ε0 þ ln ½S01ðp̄Þ=v0S00ðp̄Þ�; ð6Þ

4K ¼ β̄ε0; f̄ ¼ − ln ½S00ðp̄Þ� þ 1
8
cβ̄ε0 − h; ð7Þ

which relations effectively parallel (2).
If, as we may surely accept, Ising models for d ¼ 2 and 3

obey simple scaling, the associated CCG models must
exhibit complete scaling in all its aspects [2,7]. But may all
the values allowed by (4) be realized in reasonable models?
And might the singularity in μ00σ dominate so that jAμj > Ap

and can one have Rμ > 1
2
? For CCG0 models (6) and (7)

lead to

j2 ¼ ρcðS11=S01 − S10=S00Þc ¼ hΔvΔ _vic=vch _vic; ð8Þ

where Δv ¼ v − hvi, etc., while hvl _vmi ¼ Slm=S00 [21].
Now, suppose the free volumes are fixed, _vk ¼ v0 (all k),

so that Δ _v≡ 0. This recaptures j2 ¼ Rμ ¼ 0, the usual
SLG or FT result, and so demonstrates clearly that the
origin of the YY anomaly lies in the fluctuating free
volumes available to fluid particles.
More realistically, suppose that the particles have a fixed

“core volume” w ≥ 0 so that _vk ¼ vk − w > 0. Via (8) this
yields j2 ∝ hΔv2i > 0 and hence, using (3) and (4), Rμ is
always negative: see Fig. 1(a) computed with 3D Ising data
[22]. Note that large core volumes w relative to vmin
(or broad h_vki distributions) yield arbitrarily large values
of −Rμ. For all such models, the diameters ρdðTÞ close to
Tc must curve up to higher densities; see Fig. 1(a). This is

(a) (b)

FIG. 1. Yang-Yang ratios Rμ and anomalies for simple com-
pressible cell gas models (CCG0) showing CV (bold dashed line),
~Cμ (bold solid line, red), and ~Cp (thin solid line, blue) for ρ ¼ ρc,
and the reduced diameters, Δρd ¼ ðρd − ρcÞ=ρc (thin solid line),
and their jtj2β components (bold dashed line, red) with (a) n ¼ 3,
v2 ¼ θv1, v3 ¼ v1, w ¼ 0 (point particles) and θ ¼ 5 (while
θ ¼ 50 gives Rμ ¼ −1.23) and (b) n ¼ 2, v2 ¼ θv1 and,
for highly compressible particles, _v2 ¼ _v1=θ and θ ¼ 1=5 (while
θ ¼ 1=50 yields Rμ ¼ 0.46).

PRL 116, 040601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 JANUARY 2016

040601-2



contrary to typical observations [10] which, however, may
be dominated numerically by the jtj1−α singularity; but that
vanishes in CCG0 models since 4K ¼ β̄ε0 in (7) implies
j1 ¼ l1 ¼ 0, i.e., no mixing of p and μ into the T-scaling
field ~t. This feature remains in augmented models in which
a particle in cell k acquires a potential energy εk requiring
a further factor expð−β̄εkÞ in (5).
To realize positive Rμ in CCG0 models, requires j2 < 0

and so, by (8), free volumes _vk that are anticorrelated
with the vk. This may be realized for “highly compressible”
particles that, e.g., when a cell volume v1 decreases by a
factor θ < 1, the core volume decreases more rapidly so
that the new free volume _v2 ¼ v2 − w2 exceeds _v1 by, say,
the inverse θ−1 > 1 [23]. Even for n ¼ 2 this yieldsRμ > 0

while Rμ ¼ 1
2
−OðθÞ when θ → 0, implying ~Cp ≳ ~Cμ as

T → Tc; see also Fig. 1(b).
A natural extension of the CCGs is to follow Naya [24]

and “decorate” each bond of a given lattice with an extra
site; indeed, as established long ago [25], this approach can
be greatly extended. Then the bond sites or, more generally,
secondary cells of such a decorated CCG may entail an
arbitrary number of particles, cell volumes, energy levels,
external fields, etc., while exact solubility is retained [25].
Likewise, the secondary parameters may vary independ-
ently or, more generally, be coupled to the occupancy of the
primary cells. All the needed information is then contained
in appropriate decorating factors, Ψþþ, Ψþ−, and Ψ−−,
which embody sums over the Boltzmann factors of the
secondary cells [25]. See Fig. 2 for the simplest case in
which the free volumes, etc., are the same for primary and

secondary cells while attractive interactions of magnitude
ε0 are assumed.
In general, for simple occupancy, the transformation in

terms of the decorating factors yields [21]

2h ¼ μ̄þ 1
2
cβ̄ε0 þ ln½S01Ψc=2

þþ=v0S00Ψc=2
−− �; ð9Þ

4K ¼ β̄ε0 þ ln½ΨþþΨ−−=Ψ2þ−�; ð10Þ

f̄ ¼ − ln½S00Ψ3c=8
−− Ψc=4

þ−=Ψ
c=8
þþ� þ 1

8
cβ̄ε0 − h; ð11Þ

which indicates that extra contributions arise from Ψþþ,
Ψþ−, and Ψ−−; from these relations, in addition to
“pressure mixing,” i.e., j2 ≠ 0, one can derive nonvanish-
ing expressions for j1 and l1 in (2).
Naturally it is not necessary to decorate every bond or to

decorate each one in the same way. Thus one may readily
construct layered or anisotropic models. Furthermore, the
various decorating factors entering a given primary cell can
be chosen to couple in special ways: e.g., as used for Ising
antiferromagnets exactly soluble in an arbitrary magnetic
field [26].
Another valuable extension of the decoration approach

is to introduce energy-volume coupling. As illustrated in
Fig. 3, this may not need “occupiable” secondary cells.
Rather, by introducing appropriate decorating factors, one
can solve in the critical region (and in general) what may
be called Sastry-Debenedetti-Sciortino-Stanley (SDSS or
S3D) models [27], devised specifically to handle the
anomalous thermodynamic properties of water (and
D2O) [28] by recognizing the role of hydrogen bonds in
generating expanded and lower energy, transient icelike
structures in the fluid. To formulate the model one
envisages [27] that each H2O molecule may take q distinct
“orientations,” or “configurations,” or, less specifically,
microstates. When adjacent primary cells—squares in
Fig. 3—are both occupied, one postulates that q of the
q2 joint orientations (or microstates) form a hydrogen bond.

FIG. 2. States of a CCG for a lattice of primary cells (squares)
decorated by secondary cells (diamonds) with, as indicated,
decorating factors, expressed using the notation (5), that depend
on the occupancy of the primary cells [25].

FIG. 3. Decorating factors for the S3D water model [27], with
“H” indicating the formation of a hydrogen bond with a lower
energy but a free volume increase of vþ.
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Further, such a bond will be awarded an energy lower by δε
and gain a free volume greater by vþ. Despite their
depiction in Fig. 3, it is also clear that the “secondary
cells” serve only to identify the bond.
From the decorating factors in Fig. 3 one finds, using

(9)–(11) with n ¼ 1 and v1 ¼ _v1 ¼ v0 in (5),

j2 ¼ 1
2
cρcvþeβ̄cδϵ−p̄cvþ=ðq − 1þ eβ̄cδϵ−p̄cvþÞ; ð12Þ

while j1 ∝ vþ but l1 vanishes [21]. Evidently, then, Yang-
Yang anomalies and nonzeroRμ can arise even when single
particles may explore only a fixed free volume, v0, provided
the interaction energy of particles is sensitive to free-
volume changes. Since q ≥ 1 the result (12) means j2> 0
so that, by (3), only negative values of Rμ can appear.
One may conclude that correlation of lower energy with
increased free volume will yield Rμ < 0.
Conversely, to generate positive values of Rμ one may

simply change the sign of vþ (which also serves to
correlate energy with volume). However, to maintain
positive free volumes for all particles—and thus a proper
ideal-gas limit at low densities—one may argue that
each primary cell receives inputs from c bonds while each
bond can, in essence, share its reduced free volume
between its two (neighboring) primary cells. Thus one
must require jvþj < 2v0=c; nevertheless, (12) remains
valid for j2. However, the same bound, Rμ <

1
2
, as found

for CCG0 models, is still valid. To generate simple models
that allow larger values of Rμ—as found experimentally
for propane [2,3]—remains an open task.
A natural further question is “How about compressible

cell models with continuously compressible cells?” Such
models may be constructed along the lines set out following
Eq. (4); but rather than introducing n discrete “compressed
cells” one may contemplate a distribution. Then the sum in
Eq. (5) is replaced by an integral, say, over a normalized
Gaussian distribution; the width of the Gaussian sets the
scale of allowed local volume fluctuations. Recall, again,
that it is these fluctuations in local volume that—as is now
clear from the CCG models—lie at the root of Yang-Yang
anomalies.
On the other hand, when it comes to off-lattice or

continuum systems one must rely on careful simulations
[6,10]. These have taught us that decreasing the width of
the attractive well (e.g., in a hard-core square-well fluid)
increases the asymmetry of coexistence curves to which
the YY anomalies contribute. Coulombic interactions (in
studies of the RPM, i.e., “restrictive primitive model,”
electrolyte) have a similar effect. But a concrete benefit of
our (in effect) exactly soluble (even if somewhat artificial)
CCG models is that such trends can be tested individually,
analytically, and quantitatively—as we sketched above for
the S3D model [27]. Thus one may contemplate studies of
anisotropic interactions, particular many-body forces, etc.,

and hope to gauge explicitly the degree to which the YY
anomalies respond.
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