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Weak measurements have thus far been considered instrumental in the so-called direct measurement of
the quantum wave function [J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct
measurement of the wave function can be obtained by using measurements of arbitrary strength. In
particular, in the case of strong measurements, i.e., those in which the coupling between the system and the
measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by
showing that strong measurements outperform weak measurements in both for arbitrary quantum states
in most cases. We also give the exact expression of the difference between the original and reconstructed
wave function obtained by the weak measurement approach; this will allow one to define the range of
applicability of such a method.
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In quantum mechanics, the wave function is the funda-
mental representation of any quantum system, and it offers
the key tool for predicting the measurement outcomes of a
physical apparatus. Its determination is therefore of crucial
importance in many applications. In order to reconstruct the
complete quantum wave function of a system, an indirect
method, know as quantum state tomography (QST), has
been developed [1]. QST is based on the measurement of
complementary variables of several copies of the same
quantum system, followed on an estimation of the wave
function that better reproduce the results obtained. This
method, originally proposed for a two-level system, has
been extended to a generic number of discrete quantum
states [2] as well as to a continuous variable state [3].
Recently, Lundeen et al. [4] proposed an alternative
operational definition of the wave function based on the
weak measurement [5–7]. After the first demonstration, in
which the transverse wave function of a photon has been
measured, this method has been applied for the measure-
ment of the photon polarization [8], its angular momentum
[9], and its trajectory [10]. The method has been sub-
sequently generalized to mixed states [11] to continuous
variable systems [12] and compared to standard quantum
state tomography in Refs. [13,14].
By such a method, that we call direct weak tomography

(DWT), a “direct measurement” of the quantum wave
function is obtained: the term direct measurement refers to
the property that a value proportional to the wave function
appears straight from the measured probabilities without
further complicated calculations or fitting on the mea-
surement outcomes [15]. As originally proposed [4], the
method is based on the weak measurement obtained
by a “weak” interaction between the “pointer” (i.e., the
measurement apparatus) and the system. Weak measure-
ments occur when the coupling between the pointer and the
system is much less than the pointer width. As reported in

the literature, “the crux of [the] method is that the first
measurement is performed in a gentle way through weak
measurement, so as not to invalidate the second” [4] or
“directly measuring […] relies on the technique of weak
measurement: extracting so little information from a single
measurement that the state does not collapse” [8].
The interest about DWT is that the scheme in some cases

may have experimental advantages over QST, in terms of
simplicity, versatility, and directness [11]: it requires only a
weak coupling of the system with an external pointer, a
postselection of the final state of the system, and a simple
projective measurement of two complementary observables
of the pointer, a two-level system. QST, in contrast, requires
measuring a complete set of noncommuting observables of
the system, which can be a very demanding requirement in
systems with a large number of degrees of freedom. For
instance, the determination of the transverse spatial wave
function of a single photon was first realized by DWT [4],
as well as the measurement of a one-million-dimensional
photonic state [16].
Here we show that the quantum wave function can be

obtained by the same scheme used in DWT but using
only strong measurements: with this term we here refer to
measurements characterized by a strong coupling between
the system and the pointer. As explained below, a strong
measurement does not always coincide with a projective
measurement on the system.
We thus demonstrate that the weak measurement is not

necessary for the direct measurement of the wave function.
We then compare DWTwith our method, showing that the
use of strong measurements in most cases gives a better
estimation of the quantum wave function, outperforming
DWT when both accuracy and precision are considered.
Our analysis also allows one to evaluate how the wave
function estimated by DWT is related to the correct wave
function; see Eq. (5). We also solved an unresolved
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question related to DWT: how “weak” the interaction
should be such that DWT gives a correct estimation of
the wave function. In particular, we will derive a sufficient
criterium for the applicability of DWT based on the
measured probabilities; see Eq. (8).
Review of direct weak tomography.—Let us consider a

d-dimensional Hilbert space with basis fjxig with
x ¼ 1;…; d. The states jxi are equivalent to position
eigenstates of a discretized segment. A generic pure state
in this basis can be written as

jψiX ¼
Xd
x¼1

ψxjxi: ð1Þ

The scheme used in DWT is shown in Fig. 1: first, the
following initial state jΨini ¼ jψiX ⊗ j0iP is prepared,
with j0iP the pointer state. The pointer belongs to a
bidimensional qubit space spanned by the states
fj0iP; j1iPg [17]. The system is then evolved according
to the following unitary operator:

UxðθÞ ¼ e−iθπ̂x⊗σ̂y ≈ 1 − iθπ̂x ⊗ σ̂y; ð2Þ
where θ is an arbitrary angle and π̂x ¼ jxihxj. The approxi-
mation of the right-hand side of Eq. (2) is obtained for small
θ. The previous evolution corresponds to a pointer rotation
conditioned to jψiX being in the state jxi. A projective
measurement on the pointer, weakly coupled to the
photon position and followed by a projective measurement
of the photon momentum, allows one to directly determine
the wave function. Indeed, by postselecting only the
outcomes corresponding to the zero transverse momentum
state jp0i ¼ ð1= ffiffiffi

d
p ÞPxjxi, the (unnormalized) pointer

state becomes jφiP ≈ ð1= ffiffiffi
d

p Þ½ ~ψ j0iP þ θψxj1iP � with
~ψ ¼ P

d
x¼1 ψx. The choice of jp0i is arbitrary, and a diffe-

rent value of the transverse momentum might be needed for
particular states, as explained below. Since a global phase is
not observable, it is possible to arbitrarily choose the phase
of ~ψ : we set the latter phase such that ~ψ is real valued and
positive. In the first order in θ, the wave function can be
derived directly as [4]

ψW;x ¼
d

2θ ~ψ
½ðPðxÞ

þ − PðxÞ
− Þ þ iðPðxÞ

L − PðxÞ
R Þ�; ð3Þ

where PðxÞ
j represent the probabilities of measuring the

pointer state into the diagonal basis j�iP ¼ 1ffiffi
2

p ðj0i � j1iÞ

or the circular basis jLiP ¼ 1ffiffi
2

p ðj0i þ ij1iÞ and jRiP ¼
1ffiffi
2

p ðj0i − ij1iÞ. We note that, since the (real positive)

proportionality constant ðd=2θ ~ψÞ is x independent, it can
be obtained at the end of the procedure by normalizing the
wave function. The different probabilities can be also
expressed in the framework of a positive operator-valued
measure (POVM), as detailed in Supplemental Material
[18]. From now on, we indicate with ψW;x the (approxi-
mate) wave function obtained with the DWT method. We

also define ~ψW ≡P
xψW;x ¼ ðd=2θ ~ψÞPxðPðxÞ

þ − PðxÞ
− Þ,

and we fix the global phase of ψW;x by Eq. (3).
Relation (3) was generalized to mixed states in Ref. [11].

By repeating the measurements and changing the x
parameter in the evolution UxðθÞ, the full wave function
can be reconstructed. We now show that a relation similar
to (3) can be obtained by strong or arbitrary strength
measurements.
Arbitrary strength measurement.—Measurement with

arbitrary strength is obtained by choosing an arbitrary
value of θ within 0 < θ ≤ π=2. We start our analysis
with strong measurements, corresponding to θ ¼ π=2. In
this case the unitary operator (2) becomes Uxðπ=2Þ ¼
1 − jxihxj ⊗ ð1π þ iσyÞ. After the interaction, the initial
state jΨini is measured on the state jp0i ⊗ jϕfi, where jϕfi
is the final polarization state. The amplitude for that
transition is just A¼hp0jψiXhϕfj0iP −ψx

ffiffiffiffiffiffiffiffi
2=d

p hϕfj−iP .
This amplitude involves both the real and imaginary parts
of ψx, so its magnitude squared does, too: by choosing
different values of jψfi, it is possible to determine the real
and imaginary parts of ψx. In particular, by choosing the
final state jϕfi as j1iP , jþiP , j−iP , jLiP , and jRiP states,
the wave function can be obtained as

ψx ¼
d
2 ~ψ

½ðPðxÞ
þ − PðxÞ

− þ 2PðxÞ
1 Þ þ iðPðxÞ

L − PðxÞ
R Þ�: ð4Þ

To obtain the above relation, we fixed again ~ψ ¼ j ~ψ j. It is
very important to stress that, differently from the DWT
method, the above result is exact, without any approxima-
tion. We denote the previous relations as the direct-strong-
tomography (DST) method. The difference with respect to
the DWT is the need of measuring the pointer state also in
the state j1iP . This extra requirement is compensated by the
fact that the result is not approximated and the accuracy and
precision of the method overcome the DWT, as we will
show in the following. We underline that the measurement
in the j1iP state, and only in this state, corresponds to a
projective measurement of the photon position, as the
outcome of the measurement is proportional to jψxj2
(see [18]). On the contrary, a projection of the pointer in
the fjþi; j−ig or fjLi; jRig bases acts as a partial quantum
erasure on the which-position information; therefore, a
subsequent momentum postselection allows one to extract
information about the real and imaginary parts of ψx. As

FIG. 1. Scheme of the original DWT method used to measure
the wave function.
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detailed in Supplemental Material [18], for arbitrary θ, the

wave function can be obtained as ReðψxÞ ∝ PðxÞ
þ − PðxÞ

− þ
2 tanðθ=2ÞPðxÞ

1 and ImðψxÞ ∝ PðxÞ
L − PðxÞ

R .
Accuracy of DWT.—In the case of DWT, the obtained

wave function ψW;x is an approximation of the correct wave
function ψx. We now evaluate the accuracy of the DWT,
namely, the errors arising by using Eq. (3) in place of the
exact values of (4). As done in Ref. [13], we define
the accuracy in terms of the trace distance D between
the correct wave function ψx and the weak-value approxi-
mation ψW;x [19], that for pure states reduces to

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψ jψWij2

p
. We first give the analytical expres-

sion of D in terms of the original wave function and then
show how D can be upper bounded by using the meas-
urement outcomes.
As shown in Supplemental Material [18], the relation

between the exact wave function ψx and the weak-value
estimate ψW;x given in (3) can be expressed by the
following relation:

ψW;x ¼ ψx
~ψ − ϵθψ

�
x

N
; ð5Þ

with ϵθ ≡ 2sin2ðθ=2Þ, N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~ψ − ϵθhψxij2 þ ϵ2θσ

2
ψ

q
, and

σ2ψ ≡ hjψxj2i − jhψxij2. In the previous equation, σ2ψ is the
“variance” the wave function where the average is defined
with respect to the probability density px ¼ jψxj2, namely,
hjψxj2i ¼

P
xjψxj4 and hψxi ¼

P
xψxjψxj2. By inserting

(5) into the trace distance D, we obtain

D ¼ ϵθσψ
N

; ð6Þ

expressing D in terms of the original wave function ψx and
the interaction parameter θ. The previous expression
indicates when the weak measurement method can be
efficiently used; indeed, when

D ≪ 1; ð7Þ

the approximate wave function ψW;x correctly estimates the
wave function ψx. Since Eq. (6) can be inverted into
ϵθσψ ¼ ðD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −D2

p
Þj ~ψ − ϵθhψxij, for a smallD condition

(7) is equivalent to ðϵθσψ=j ~ψ − ϵθhψxijÞ ≪ 1 (see
Supplemental Material [18] for the detailed calculation).
Condition (7), however, cannot be used if the exact wave

function ψx is unknown. For this reason, we now present a
sufficient condition for the application of the DWT method
that is expressed in terms of the measured probabilities.
As shown in Supplemental Material [18], when the
following inequality is satisfied:X

x

ðPðxÞ
þ − PðxÞ

− Þ ≥ 0; ð8Þ

the systematic error is bounded by D ≤ θ=2 (for small θ).
We note that Eq. (8) is equivalent to ~ψW ≥ 0 when the
global phase of ψW;x is fixed by Eq. (3).
If condition (8) is not satisfied, the DWT method is not

guaranteed to work, and a lower θ should be chosen to
achieve condition (8). Since ~ψW can be expressed in term of
the original wave function as ~ψW ¼ ð ~ψ2 − ϵθ=N Þ, for any
wave function with ~ψ ≠ 0 it is possible to lower θ such that
condition (8) is satisfied. The wave functions with ~ψ ¼ 0
corresponds to the set of “pathological” wave functions for
which the DWT and the DST methods do not work for any
values of θ if the momentum postselected state is jp0i.
Indeed, if ~ψ ¼ 0, the systematic error (6) can be easily
evaluated to be D ¼ σψ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjψxj2i

p
that is independent of θ:

by changing the interaction parameter, the error cannot be
lowered for such wave functions [20]. Also for DST, the
proportionality constant ðd=2 ~ψ sin θÞ in (4) diverges if
~ψ ¼ 0. In such a case, a different momentum state for
postselection different from jp0i must be used.
To better evaluate the accuracy of the DWT, we

have randomly chosen 106 wave functions in a d ¼ 10-
dimensional Hilbert space according to the Haar measure.
We calculated for different values of θ the probability pW
to violate the sufficient condition, namely, pW ¼
Probð ~ψW < 0Þ. We also calculated the probability pD of
having an error D, evaluated by (6), larger than 0.1. In
Fig. 2, we show the probabilities pW and pD in a function
of θ. In the inset, we also show the systematic error D in a
function of σψ= ~ψ for different values of θ. Since the
distribution of N is peaked around ~ψ for θ ≤ 0.5, it is
possible to approximate D ≈ ϵθðσψ= ~ψÞ: indeed, the
dashed lines in the inset in Fig. 2 represent the curves
D ¼ ϵθðσψ= ~ψÞ. The figure shows that, for low values of θ,
the DWT method fails with low probability and the
systematic error is limited. Indeed, if we choose θ ≤ 0.2
for the d ¼ 10 case, we have pW ≤ 1.75% and
pD ≤ 0.57%. Then, as expected, low values of the inter-
action parameter θ are suitable for the correct application
of the DWT method. However, as we will show in the
following, such low θ values lead to a larger statistical error

FIG. 2. Accuracy of the DWT: we show the probability pW of
having ~ψW < 0 and the probability pD of having an errorD larger
than 0.1. The inset shows trace distance D in a function of σψ= ~ψ
for different values of θ. We randomly choose 106 wave functions
in a d ¼ 10-dimensional Hilbert space. Dashed lines in the inset
represent the curves D ¼ ϵθðσψ= ~ψÞ.
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(i.e., lower precision) compared to the strong measurement
method.
Precision of the DWT.—An important performance

parameter is the precision of the method, namely, the
statistical errors on the estimated wave function. In par-
ticular, it is important to evaluate the scaling of such errors
with the number of measurements. To this purpose, we
evaluated the mean square statistical error δψ of the DWT
and DST methods, obtained by summing the squares of the
statistical error on the different ψx:

δψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

jδψxj2
r

: ð9Þ

As shown in Supplemental Material [18], the ratio between
the statistical errors δψS and δψW , respectively correspond-
ing to the strong and weak method, can be approximately
bounded by

δψS

δψW
≲ sin θ0

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d − 5Þ ~ψ2 þ 2 ~ψ þ 8 − 2=d

ð2d − 1Þ ~ψ2 þ 2ϵθð1 − ~ψ − 2 ~ψ2Þ

s
; ð10Þ

where θ0 is the interaction parameter used for the weak
measurement. The terms sin θ0 in Eq. (10) shows that low
values of θ0 correspond to a lower precision (i.e., larger
statistical errors) of the DWT with respect to the DST
method. In the statistical analysis, we compared the two
methods by fixing the number of repetitions N of the
experiment; in the DWT or DST method, N=2 or N=3
repetitions are used for each basis, respectively. This is the
origin of the

ffiffiffiffiffiffiffiffi
3=2

p
factor in Eq. (10).

For a complete demonstration of such a feature, we
calculated the exact ratio ðδψS=δψWÞ for 106 randomly
chosen wave functions and compared it with the success
parameter ~ψW and the systematic error D. The results are
shown in Figs. 3 and 4. Figure 3 shows that, when the
sufficiency condition for applying the DWT is satisfied
(i.e., ~ψW ≥ 0), the statistical errors of the DWTare typically
greater than the errors of the DST. An approximate trend
of the ratio δψS=δψW can be obtained by noticing that,

sinceN ≈ ~ψ , we can approximate ~ψW ≈ ~ψ − ϵθ= ~ψ . Dashed
curves in Fig. 3 represent the right-hand side of Eq. (10),
with ~ψ replaced by 1

2
ð ~ψW þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ψ2
W þ 4ϵθ

p
Þ, and well repro-

duce the behavior of the ratio δψS=δψW .
To further prove that the DST precision is typically

greater than the DWT one, we plot in Fig. 4 the same ratio
δψS=δψW in a function of the exact trace distance D: for
low systematic errorD, the statistical errors of the DWTare
typically greater than the errors of DST. Equivalently,
statistical errors of the DWT are reduced only as the
systematic errors increase. Figure 4 shows that the DST
precision overcomes the DWT one in most of the cases in
which the DWT is accurate.
To better appreciate the above results, we plot in Fig. 5

the mean values of ðδψS=δψWÞ and D averaged over 106

random wave functions in a function of θ. The plot in Fig. 5
shows again that in order to lower the trace distance D
it is necessary to decrease θ. However, decreasing θ, the
statistical error δψW becomes larger than δψS.
Mixed states.—The DWT can be generalized to deter-

mine the density matrix ρ of mixed states, as shown in
Ref. [11]. To directly measure ρ, the same method
described for a pure state can be used, with the extra
requirement that the strong measurement on momentum
should be performed in all the momentum states
jpi ¼ ð1= ffiffiffi

d
p ÞPxe

2πiðpx=dÞjxi, while the pointer is mea-
sured in the j�iP , jRiP , jLiP states (as done for the pure
state jψiX). We indicate by ρW the density matrix that is
reconstructed by the DWT and that approximates the
correct matrix ρ. As shown in Supplemental Material
[18], it can be expressed as

FIG. 3. Ratio of statistical errors ðδψS=δψWÞ in a function of
~ψW . The shaded area represents the points in which the DWT is
convenient with respect to the DST method, corresponding to
~ψW ≥ 0 and δψW ≤ δψS.

FIG. 4. Ratio of statistical errors ðδψS=δψWÞ in a function ofD.
The shaded area represents the wave functions for which the
statistical error of the DWT is lower than the DST method.

FIG. 5. Mean values of ðδψS=δψWÞ and D averaged over 106

random wave functions in a function of θ.
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ρW ¼ 1

cos θ
½ρþ ðcos θ − 1ÞD�; ð11Þ

with D a diagonal matrix whose element are equal to the
diagonal of ρ, namely, Dx;y ¼ δx;yρx;x. By evaluating the
accuracy of the DWT in terms of the trace distance D
between ρ and ρW , we obtained

D ¼ 1 − cos θ
2 cos θ

Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ −DÞ2
q i

: ð12Þ

Also in this case, the larger θ is, the larger D is and the
lower the accuracy is in the estimation of ρ by the DWT.
Similarly to what we have shown for pure states, by
performing an extra measurement of the pointer in the
j1iP state, the exact expression of the density matrix can be
obtained for any value of θ also in the case of mixed states
(see Supplemental Material [18]).
Conclusions.—We have demonstrated that, in order to

achieve a direct measurement of the wave function, weak
measurements are not necessary. Indeed, we have shown that
by using strong measurements, in which a large entangle-
ment is achieved between the system and the pointer, a better
estimation of the wave function, in terms of precision and
accuracy, can be obtained for randommatrices inmost cases.
Our method allowed us to derive a sufficient condition for
the applicability of direct weak tomography. We believe
that our results give a deeper understanding of the meaning
of the weak value for the estimation of the wave function.
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