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In recent years, a large body of research has focused on unveiling the fundamental physical processes
that living systems utilize to perform functions, such as coordinated action and collective decision making.
Here, we demonstrate that important features of collective decision making among higher organisms are
captured effectively by a novel formulation of well-characterized physical spin systems, where the spin
state is equivalent to two opposing preferences, and a bias in the preferred state represents the strength of
individual opinions. We reveal that individuals (spins) without a preference (unbiased or uninformed) play
a central role in collective decision making, both in maximizing the ability of the system to achieve
consensus (via enhancement of the propagation of spin states) and in minimizing the time taken to do so
(via a process reminiscent of stochastic resonance). Which state (option) is selected collectively, however,
is shown to depend strongly on the nonlinearity of local interactions. Relatively linear social response
results in unbiased individuals reinforcing the majority preference, even in the face of a strongly biased
numerical minority (thus promoting democratic outcomes). If interactions are highly nonlinear, however,
unbiased individuals exert the opposite influence, promoting a strongly biased minority and inhibiting
majority preference. These results enhance our understanding of physical computation in biological
collectives and suggest new avenues to explore in the collective dynamics of spin systems.
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Collective decision making is ubiquitous across cellular
[1,2], animal [3], human [4,5], and engineered systems [6].
Despite varying greatly in terms of the type and compo-
sition of components (agents), common dynamical features
allow collectives to make rapid, accurate decisions even in
complex environments or amidst conflicting needs [7]. The
dynamics of populations of neurons, for example, have
been precisely related to binary “spins” (spikes) commu-
nicating via pairwise interactions [8,9], a characteristic of
models employed widely in statistical physics. Neural
dynamics also exhibit striking parallels with collective
decision making among organisms themselves, such as
the process by which honeybee colonies decide among
alternative nest sites [10,11]. Thus, by abstracting micro-
scopic details and relating biological computation directly
to that among physical particles, we can obtain consid-
erable insight regarding collective behavior and possibly
reveal novel aspects of physical systems.
Here, we explore the dynamics of populations making

collective decisions. Despite being inspired by recent

experimental data from animal groups, we deliberately
shift the focus from understanding collective decisions in a
particular experimental context to a general understanding
of the underlying dynamical interplay among population
constitution, space, and the character of local interactions.
In doing so we demonstrate that many of the complex, and
possibly counterintuitive, features seen when considering
collective decision making by organisms can be repre-
sented via consideration of a continuum, or “family,” of
spin system models.
A main focus of our work is to consider observations

in animal groups that suggest that unbiased (or unin-
formed) individuals can strongly influence the outcome of
collective consensus decisions [11]. Previous phenom-
enological models, while able to capture some elements
in common with experiments [11], provide relatively
limited insight into the mechanism of action. Here, we
exploit the well-characterized nature of physical spin
systems to deepen our theoretical understanding of
collective decision making, employing a two-choice
decision task for a group with three distinct subpopula-
tions: two subpopulations with conflicting preferences
(informed or preference individuals), and a variable
proportion of unbiased individuals (who participate in
the decision making process, but have no information
and/or no preferred outcome).
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In physical terms one could think of each informed
subpopulation as being sensitive to a different external
field. Each field exerts an influence on the corresponding
subpopulation, increasing its tendency to remain in, or
return to, its preferred state. Thus, beyond biological
applications, our work suggests new avenues to explore
in interacting particle systems, and could have applications
in a wide range of systems from magnetic materials to
neural and social dynamics.
Description of the model.—We consider a family of

nonlinear (discrete time) voter models on the 2D square
lattice [12–16] in which individuals may, or may not,
exhibit a bias regarding their preferred state; our social
collective is a spin system in which each lattice point is
characterized by an opinion state σz ∈ f−1;þ1g and a
fixed bias ωz. Opinion states change in time and are shared
with neighbors during interactions. For simplicity, we
assume that ωz ∈ fω0;ωþ;ω−g, corresponding to unbiased
(ω0 ¼ 1), biased to þ1 (ωþ > 1), and biased to −1
[ω− ∈ ð0; 1Þ] subpopulations, respectively. We assume that
individuals from each biased subpopulation are randomly
and uniformly distributed in the landscape according to the
density ½ρ0; ð1 − ρ0Þρþ; ð1 − ρ0Þρ−�.
At each time step, an individual samples the opinions of

its four neighbors, mimicking local influence or social
pressure, and computes a social field that is distorted by its
own personal bias ωz:

hωz
¼ ωznþz − n−z

ωznþz þ n−z
∈ ½−1; 1� ð1Þ

in which nþz ðn−z Þ is the number of neighbors with þ1ð−1Þ
opinions.
Bias is implemented as an amplification of the influence

of neighbors who agree with an individual’s internal
preference. This amounts to an increased willingness to
switch into, or an intransigent tendency to remain in, a
preferred state given at least one supporting neighbor.

Given its social field hωz
, an individual then updates its

opinion state probabilistically. Individuals in the −1 state at
time t transition to the þ1 state at time tþ 1 with a
probability Gβðhωz

Þ and individuals transition from the þ1

to the −1 state with a probability 1 −Gβðhωz
Þ, whereGβðhÞ

is the following sigmoid function:

GβðhÞ ¼ 1

2

�
1þ tanhðβhÞ

tanhðβÞ
�

∈ ½0; 1� ð2Þ

and where β ∈ ð0;∞Þ serves to parametrize the nonlinear-
ity of the model. When ωz ¼ 1∀ z (no bias), and in the limit
as β → 0, our model reduces to the classical voter model
[17,18]. By contrast, as β → ∞, GβðhωÞ becomes a step
function and we recover zero temperature (discrete time)
Ising dynamics [15,19] (also known as the majority-rule
model). Interpolating between these two extremes allows us
to investigate models that exhibit a spectrum of coarsening
behaviors [20].
Consensus and time to equilibrium.—The impact of

unbiased individuals on the equilibrium of the system is
readily apparent [Fig. 1(a)]. In the absence of a sufficient
density of such individuals, the system becomes frozen in a
frustrated state with pockets of each opinion [22]. A set of
similarly biased individuals within a small region of space
is self-reinforcing, and at low densities of unbiased indi-
viduals these self-reinforcing pockets are common, pre-
venting the flow of information across the system. By
contrast, clusters of unbiased individuals can be thought of
as pooling information or allowing opinions to propagate.
Thus, increasing the density of such individuals contributes
to achieving consensus in two key ways—spatially diluting
biased individuals, and pooling opinion states.
For each set of system parameters, we find there is a

specific density of unbiased individuals (ρ�0) at which self-
reinforcing clusters disappear and the system will reach

(a) (c)(b)

FIG. 1. The equilibrium magnetization is shown for a nonlinear system ðβ ¼ 0.5Þ as a function of the density of unbiased individuals
(a). A magnetization of þ1 (−1) corresponds to majority (minority) consensus. In all three panels, we started with a random uniform
distribution of opinion. The majority and minority have equivalent biases ðωþ ¼ 1=ω− ¼ 2.96Þ, ensuring positive mean opinions
(ρþ ¼ 1.5ρ−). In (b), the time steps taken to reach 98% of the equilibrium value hσi are shown as a function of the density of unbiased
individuals. Panel (c) shows that the existence of some biased individuals accelerates domain formation on a fast time scale; however,
too many lead to multiple stable domains.
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consensus (hσi ¼ �1). For a wide range of parameters, this
specific density also corresponds to both the global mini-
mum for the time to consensus and a local minimum in the
time to equilibrium (where equilibrium may be a frustrated
state) [Fig. 1(b)]. In particular, the time to equilibrium is a
nonmonotonic function of the density ρ0, and, in the vicinity
of ρ�0, adding unbiased individuals to the system can both
increase magnetization and reduce the time to equilibrium.
In a broad sense, this behavior is analogous to (aperiodic)

stochastic resonance [23–25], in which adding some noise,
here the unbiased individuals, to the system can actually
amplify the signal, here the magnetization. Unbiased
individuals can be interpreted as noise, in the sense that
they do not carry any intrinsic preference, and that in the
absence of biased individuals, the population would drift to
a þ1 or −1 magnetization with equal probability.
Furthermore, our system exhibits some similarities with
random nonlinear dynamical systems, where noise allows
the system to escape the local minima of a potential—here
the self-reinforcing clusters of biased individuals.
Lastly, while in the absence of any biased individuals

both absorbing states are equally probable, very little
“signal” is required to drive the system to a given absorbing
state. A small number of biased individuals (< 10) is
enough to significantly increase the probability of reaching
the preferred absorbing state (See Supplemental Material at
[26] for Fig. S2).
Effect of nonlinearities.—We now turn our attention to

the impact of the unbiased individuals on the equilibrium of
the system for different values of the nonlinearity parameter
β. As in Ref. [11], we consider a majority with a weak
preference for the þ1 state and a minority with a strong
preference for the −1 state (i.e., ρ− < ρþ but 1=ω− > ωþ),
and a variable number of unbiased individuals.
Before examining the complex behavior that arises

through the interaction of space and nonlinearity, let us
first consider the role of nonlinearity alone in a mean-field
model. This space-free model can be thought of as a null
model that serves as both a convenient way to first define
the notion of intrinsic preference, and second to later
highlight the role of space. In this setting, the fraction v
of individuals in the þ1 state is described by the dynamics

v0ðtÞ ¼ hbβ(vðtÞ)i − vðtÞ; ð3Þ

where hbβðvÞi can be interpreted as the preference for the
þ1 state in a population with magnetization hσi ¼ 2v − 1:

hbβðvÞi ¼ ρ0b
β
0ðvÞ þ ð1 − ρ0ÞðρþbβþðvÞ þ ρ−bβ−ðvÞÞ;

where bβi ðvÞ is the probability for an individual of type i to
switch from −1 to þ1 in a population where the magneti-
zation of each individual is chosen independently accord-
ing to the distribution Pð1Þ ¼ 1 − Pð−1Þ ¼ v. When social
influence in the population does not favor any opinion

(hσi ¼ 0 or v ¼ 1=2), the coefficient hbβð1=2Þi can be
interpreted as a measure of intrinsic preference.
If we start the dynamics at vð0Þ ¼ 1=2, the sign of the

magnetization at equilibrium is determined by the popu-
lation’s intrinsic preference. In turn, straightforward ana-
lytics show that the fraction of unbiased individuals does
not affect the sign of this intrinsic preference, but only
affects its magnitude [Figs. 2(a) and 2(b)].
In the spatial model, the situation is quite different.

Beyond altering the coarsening dynamics [27,28], the
social nonlinearity can qualitatively change the equilibrium
magnetization of the system.
First, in contrast with the mean-field model, the boun-

dary between the þ1 or −1 dominated regions of the
parameter space depends on the concentration of unbiased
individuals. As ρ0 increases, the region of parameter space
where the minority dominates at equilibrium expands; the
expansion is more prominent for higher values of β (Fig. 3).
This is consistent with the finding that unbiased individuals
can promote a specific subpopulation and, in doing so,
reverse the outcome of a collective decision [11].
Secondly, in the region of parameter space where the

numerical advantage of the majority is roughly balanced by
the increased bias of the minority (i.e., when the average
intrinsic preference of the population is close to zero) the
system deviates substantially from its mean-field behavior.
Without unbiased individuals, the system equilibrium is
close to zero magnetization [Fig. 4 (inset)]. As the
proportion of unbiased individuals increases, the magneti-
zation of the system is determined by the value of the
nonlinearity parameter β [Fig. 4 (main figure)].
If social influence during interactions tends to be

relatively linear, unbiased individuals reinforce the majority
preference in the face of a more strongly biased numerical
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FIG. 2. The function hbβðvÞi − v for different values of ρþ and
ρ0. [β ¼ 2, bβþð1=2Þ ¼ 0.79, bβ−ð1=2Þ ¼ 0.07]. For both ρ0 ¼ 0,
0.7, the consensus states are stationary points for Eq. (3) and there
exists a unique stationary point ρ� on the interval (0,1). In the
absence of unbiased individuals (a), the consensus states are
unstable, and the dynamics converge to the frustrated state ρ�.
While, for a relatively high density of unbiased individuals (b), the
internal stationary point becomes unstable and the dynamics
converge to one of the two consensus states. Points represents
the magnetization at equilibrium for ρþ ¼ 0.55 (white) and ρþ ¼
0.65 (black). Unbiased individuals do not change the sign of the
magnetization at equilibrium, but they do amplify it.
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minority, thus promoting democratic outcomes. However,
as social influence becomes increasingly nonlinear, the role
of unbiased individuals is reversed; they now tend to
promote a strongly biased minority, thus inhibiting the
role of numerical advantage and amplifying the role of
preference strength. If local interactions can be modulated
by internal or external factors, this result suggests that
group decisions may be readily adaptable [29,30].
Relaxing spatial constraints.—That the mean-field

model exhibits qualitatively different behavior than the
spatial model suggests that spatial constraints are important
to both the dynamics and the final state of the system. To
understand the role of such constraints, we consider an
intermediate model between our original fixed-position
model and a pure mean-field approach.
We employ a model of the kind studied by Durrett and

Neuhauser with fast stirring [31]. Neighboring individuals
can now exchange positions, and do so much more
frequently than they update their opinions (update with
probability ϵ ≪ 1). We make a further simplifying
assumption that the roles of biased and unbiased

individuals are randomly redistributed in the landscape
each time step [32].
In the limit as ϵ → 0, the local density of þ1 opinions is

well described by the solution to the following partial
differential equation [31]:

∂tuðx; tÞ ¼
1

2
Δuðx; tÞ þ

�
hbβ(uðx; tÞ)i − uðx; tÞ

�
; ð4Þ

which is obtained from the mean-field equation (3) by
adding a Laplacian term.
Standard analysis of reaction-diffusion equations [33]

states that when Eq. (4) has a unique stationary point on
(0,1), the asymptotic behavior of the equation is determined
by the stability of this point. When stable, the equilibrium
of the fast-stirring dynamics coincides with the mean-field
equilibrium; if unstable, the equilibrium of the system is
determined by

R
1
0 hbβðvÞidv, which can be interpreted as the

mean preference of the population. When it is greater (less)
than 1=2, the system reaches a consensus at þ1 (−1).
In Fig. 2, we started from a frustrated population in

which the mean-field equilibrium is achieved at some
internal stable stationary point ρ� ∈ ð0; 1Þ in the absence
of unbiased individuals [Fig. 2(a)]. From the previous
analysis, uðx; tÞ → ρ� as t↑∞, and the sign of the mag-
netization is determined by the population’s intrinsic
preference. By increasing the density of unbiased individ-
uals ρ0, the internal stationary point becomes unstable
[Fig. 2(b)] and the system reaches a consensus determined
by the population’s mean preference.
In summary, in the region of the parameter space where

Eq. (3) admits a unique stationary point on (0,1), the region
of dominance for the minority opinion is either determined
by the intrinsic preference of the population (low density of
unbiased individuals) or by its mean preference (high
density of unbiased individuals). As in the original spatial
model, we then observe that the minority dominated
region expands as the density of unbiased individuals
increases, and that this effect is more important for higher
values of β [34].
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FIG. 3. Intrinsic preferences are fixed across experiments [bβþð1=2Þ ¼ 0.69 and bβ−ð1=2Þ ¼ 0.08] so that the sign of the intrinsic
preference is controlled by the relative proportion of weakly opinionated individuals ρþ. For the mean-field model, a horizontal line
(ρþ ¼ 0.69) separates the þ1 and −1 dominated regions, independent of the density of unbiased individuals [panel (a), ρ0 ¼ 0; panel
(b), ρ0 ¼ 0.8]. Panel (c) shows the boundary separating the two regions for the spatial model for ρ0 ¼ 0 (solid blue curve) and ρ0 ¼ 0.8
(dotted red curve). The boundary is shifted upward for higher values of ρ0.
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FIG. 4. The average magnetization at equilibrium is shown as a
function of the local nonlinearity for different biases of both the
majority and minority. In the main figure, the fraction of unbiased
individuals is fixed at 80%. In the inset, the fraction of unbiased
individuals is equal to 0%.
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Future directions.—In this work we demonstrate that
important features of collective decision making can be
captured and understood in the context of spin systems.
There are both natural and biologically important exten-
sions to be pursued in future work. For example, decision
making systems (e.g., neural or animal groups) in nature
can be offered multiple options. Numerical simulations,
and potentially limited analyses, could be conducted for a
dynamical model interpolating between the multistate voter
model [35] and a generalization of the Potts model [36].
Additionally, we hope to focus on more complex and

naturalistic topologies. Simulating consensus dynamics on
graphsconstructed fromrealsensorynetworks infishschools
[37,38] may provide both better estimates of the actual
density of unbiased individuals in such schools and a test
bedforunderstandinghowandwhenfluctuationsduetofinite
system size play a meaningful role in decision making.
Lastly, ourwork suggests that for a given topology and set of

biasesthereisanoptimaldensityofunbiasedindividuals.Further
analysis, particularly with respect to the different time scales of
coarsening, could provide insights into a mechanism whereby
agents could self-organize toward such an optimal density.

The authors would like to thank Colin Torney for several
helpful conversations. This work was supported byNational
Science FoundationGrants No. PHY-0848755 andNo. IOS-
1355061, EAGERGrant No. IOS-1251585, Office of Naval
Research Grants No. N00014-09-1-1074 and No. N00014-
14-1-0635, Army Research Office Grants No.W911NF-11-
1-0385 and No. W911NF-14-1-0431, and Human Frontiers
Science Program Grant No. RGP0065/2012.

*a.t.hartnett@gmail.com
[1] E. B. Jacob, I. Becker, Y. Shapira, and H. Levine, Trends

Microbiol. 12, 366 (2004).
[2] T. S. Deisboeck and I. D. Couzin, BioEssays 31, 190 (2009).
[3] J. Krause and G. D. Ruxton, Living in Groups (Oxford

University Press, New York, 2002).
[4] F. Galton, Nature (London) 75, 450 (1907).
[5] J. Surowiecki, The Wisdom of Crowds: Why the Many are

Smarter Than the Few and how Collective Wisdom Shapes
Business, Economies, Societies, and Nations (Doubleday,
Garden City, NY, 2004).

[6] W. Ren and R. Beard, IEEE Trans. Autom. Control 50, 655
(2005).

[7] J. Krause, G. Ruxton, and S. Krause, Trends in Ecology &
Evolution 25, 28 (2010).

[8] E. Schneidman, M. J. Berry, R. Segev, and W. Bialek,
Nature (London) 440, 1007 (2006).

[9] G. Tkačik, O. Marre, D. Amodei, E. Schneidman, W. Bialek,
andM. J. Berry II, PLoSComput. Biol. 10, e1003408 (2014).

[10] T. D. Seeley, and P. K. Visscher, Apidologie 35, 101 (2004).
[11] I. D. Couzin, C. C. Ioannou, G. Demirel, T. Gross, C. J.

Torney, A. Hartnett, L. Conradt, S. A. Levin, and N. E.
Leonard, Science 334, 1578 (2011).

[12] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys.
81, 591 (2009).

[13] C. Castellano, M. A. Muñoz, and R. Pastor-Satorras, Phys.
Rev. E 80, 041129 (2009).

[14] M. Mobilia and S. Redner, Phys. Rev. E 68, 046106 (2003).
[15] P. L. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701

(2003).
[16] J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, and S.

Levin, Theor. Popul. Biol. 55, 270 (1999).
[17] T. M. Liggett, Stochastic Interacting Systems: Contact,

Voter and Exclusion Processes, Vol. 324 (Springer,
New York, 1999).

[18] J. Drouffe and C. Godreche, J. Phys. A 32, 249 (1999).
[19] S. Galam, Eur. Phys. J. B 25, 403 (2002).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.038701 and
Ref. [21] for simulation details.

[21] M. Weigel, J. Comput. Phys. 231, 3064 (2012).
[22] Standard arguments inMarkov chain theory tend to show that

the only two possible equilibria of the system are the two
consensus states, and that other observed (frustrated) equi-
libria are only pseudoequilibria of the system. Additional
experiments were conducted to confirm that these frozen
states are indistinguishable from the “true” equilibria. See
SupplementalMaterial athttp://link.aps.org/supplemental/10
.1103/PhysRevLett.116.038701 for Fig. S1.

[23] J. J Collins, C. C. Chow, and T. T. Imhoff, Phys. Rev. E 52,
R3321 (1995).

[24] K.Wiesenfeld and F.Moss, Nature (London) 373, 33 (1995).
[25] B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4854

(1989).
[26] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.038701 for Fig. S2.
[27] D. R. Wozny, U. R. Beierholm, and L. Shams, PLoS

Comput. Biol. 6, e1000871 (2010).
[28] S. Arganda, A. Pérez-Escudero, and G. G. de Polavieja,

Proc. Natl. Acad. Sci. U.S.A. 109, 20508 (2012).
[29] C. Torney, Z. Neufeld, and I. Couzin, Proc. Natl. Acad. Sci.

U.S.A. 106, 22055 (2009).
[30] A. Berdahl, C. Torney, C. Ioannou, J. Faria, and I. Couzin,

Science 339, 574 (2013).
[31] R. Durrett and C. Neuhauser, Ann. Probab. 22, 289 (1994).
[32] This amounts to considering a population of identical agents

either pooling social information (with probability ρ0) or
acting on an aggregate of personal (biased towards �1) and
social information. This is analogous to the situation in
Ref. [29] in which individuals change their social behavior
based on local context.

[33] P. C. Fife and J. B. McLeod, Arch. Ration. Mech. Anal. 65,
335 (1977).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.038701 for Fig. S3
showing the boundary between the −1 and þ1 dominated
regions across values of the nonlinearity parameter β.

[35] M. Starnini, A. Baronchelli, and R. Pastor-Satorras, J. Stat.
Mech. (2012) P10027.

[36] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[37] A. Strandburg-Peshkin, C. R. Twomey, N. W. Bode, A. B.

Kao, Y. Katz, C. C. Ioannou, S. B. Rosenthal, C. J. Torney,
H. S. Wu, S. A. Levin, and I. D. Couzin, Curr. Biol. 23,
R709 (2013).

[38] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu,
and I. D. Couzin, Proc. Natl. Acad. Sci. U.S.A. 112, 4690
(2015).

PRL 116, 038701 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

22 JANUARY 2016

038701-5

http://dx.doi.org/10.1016/j.tim.2004.06.006
http://dx.doi.org/10.1016/j.tim.2004.06.006
http://dx.doi.org/10.1002/bies.200800084
http://dx.doi.org/10.1038/075450a0
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1016/j.tree.2009.06.016
http://dx.doi.org/10.1016/j.tree.2009.06.016
http://dx.doi.org/10.1038/nature04701
http://dx.doi.org/10.1371/journal.pcbi.1003408
http://dx.doi.org/10.1051/apido:2004004
http://dx.doi.org/10.1126/science.1210280
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/PhysRevE.80.041129
http://dx.doi.org/10.1103/PhysRevE.80.041129
http://dx.doi.org/10.1103/PhysRevE.68.046106
http://dx.doi.org/10.1103/PhysRevLett.90.238701
http://dx.doi.org/10.1103/PhysRevLett.90.238701
http://dx.doi.org/10.1006/tpbi.1998.1404
http://dx.doi.org/10.1088/0305-4470/32/2/003
http://dx.doi.org/10.1140/epjb/e20020045
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://dx.doi.org/10.1016/j.jcp.2011.12.008
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://dx.doi.org/10.1103/PhysRevE.52.R3321
http://dx.doi.org/10.1103/PhysRevE.52.R3321
http://dx.doi.org/10.1038/373033a0
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://dx.doi.org/10.1371/journal.pcbi.1000871
http://dx.doi.org/10.1371/journal.pcbi.1000871
http://dx.doi.org/10.1073/pnas.1210664109
http://dx.doi.org/10.1073/pnas.0907929106
http://dx.doi.org/10.1073/pnas.0907929106
http://dx.doi.org/10.1126/science.1225883
http://dx.doi.org/10.1214/aop/1176988861
http://dx.doi.org/10.1007/BF00250432
http://dx.doi.org/10.1007/BF00250432
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.038701
http://dx.doi.org/10.1088/1742-5468/2012/10/P10027
http://dx.doi.org/10.1088/1742-5468/2012/10/P10027
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1016/j.cub.2013.07.059
http://dx.doi.org/10.1016/j.cub.2013.07.059
http://dx.doi.org/10.1073/pnas.1420068112
http://dx.doi.org/10.1073/pnas.1420068112

