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In this work we study the mechanical properties of a frustrated elastic ribbon spring—the non-Euclidean
minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature,
but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of
the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of
a continuous set of such isometric minimal surfaces with different extensions leads to a complete
degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed
only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the
spring is ultrasoft with a rigidity that depends on the thickness t as t7=2 and does not explicitly depend on
the ribbon’s width. Moreover, we show that as the ribbon is widened, the rigidity may even decrease. These
predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the
unusual mechanical properties of constrained non-Euclidean elastic objects.
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In recent years there has been an extensive study of the
equilibrium configurations of prestrained elastic plates.
These plates, also known as non-Euclidean plates
(NEPs) can be generated via growth, plastic deformation,
or active swelling, which are nonuniform across the sheet.
Within the formalism of incompatible elasticity such
nonuniform deformation fields prescribe non-Euclidean
reference metric fields ā on the plate. The elastic strain
is defined with respect to ā. Non-Euclidean plates were
shown to adopt nontrivial 3D configurations, when free of
external stresses [1–6]. This tendency, which stems from
their geometrical frustration, was pointed out as a desired
property for the design of self-shaping bodies. However,
until now no attention was paid to the mechanical behavior
of NEPs under an external load. In this work we perform
the first study of the mechanics of a loaded non-Euclidean
plate, showing how its frustration leads to some remarkable
properties that are absolutely excluded from ordinary,
compatible, elastic bodies.
Constraining compatible plates and shells perturbs both

the stretching and bending energies around their minima.
Contrarily, the configuration of a free frustrated thin NEP is
close to an embedding of its reference metric, far from the
minimum of the bending energy. Therefore, when slightly
constraining a thin NEP, the bending energy is not perturbed
around itsminimum, a fact that can have unusualmechanical
consequences. We demonstrate such unusual mechanics by
studying a new kind of an incompatible ribbon spring—a
ribbon with a reference metric of a minimal surface
[non-Euclidean minimal spring (NEMS)]. We analyze the
dominant energy terms of a stretched NEMS showing the
complete degeneracy of its bulk energy under extension.
This degeneracy is removed only by boundary layer effects,
leading to an anomalous flexibility of the spring. In addition,

we show that in some cases the rigidity of the spring
decreases as its width is increased. All these unusual
properties are confirmed by a numerical study.
Ribbon springs, springs that are made of curled elastic

strips, are common elements in engineering applications.
Frequently, they appear in biological systems [7,8] and
as products of self-assembly processes in the nanoscale
[9–12]. Such springs undergo various mechanical insta-
bilities [13] and have complex mechanical properties, such
as a highly nonlinear force-extension relation that com-
prises hysteresis [14,15]. Most such springs are ribbons
with a single spontaneous curvature (in this work we use
the term “reference curvature”); i.e., they can be viewed as
being cut from a cylindrical shell. The rigidity of these
springs results from the accumulation of elastic energy
upon elongation or shortening of the spring. Thin enough
ribbon springs contain only negligible in-plane strains.
Therefore, their elastic energy is dominated by the bending
energy and their rigidity κ typically scales as κ ∝
ðYWk2t3=LÞ [15]. Here, t,W, L, k, and Y are the thickness,
width, length, reference curvature, and Young’s modulus of
the ribbon, respectively.
More complicated ribbon springs, which have double

reference curvature, are known to be created via self-
assembly processes or by the growth of biological tissues.
Such ribbon springs are geometrically incompatible and
undergo nontrivial shape transitions [16,17]. Still, their
rigidity stems from deviations of the curvature tensor from
its reference values and, as such, scales similarly to the
rigidity of ordinary ribbon springs.
It was recently shown that NEPs can form ribbon

springs. For example, consider a thin and narrow elastic
strip (t ≪ W ≪ L) with margins that are longer than its
interior. Such ribbons are generated via the nonuniform
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lateral growth or swelling of macroscopic strips [18], and
appear also as nanoribbons [19]. A recent study of such
unconstrained non-Euclidean ribbons showed that they take
springlike configurations despite the absence of a reference
curvature [20].
The mechanics of non-Euclidean ribbons can be studied

within the framework of incompatible elasticity [5]. In this
formalism, any given configuration of a ribbon is accom-
panied with two tensors: the actual metric tensor a and the
actual curvature tensor b. The elastic energy of such
ribbons can be separated into two terms, stretching and
bending, that depend on deviations of a from ā and b from
zero, respectively:

E ¼ tES þ t3EB: ð1Þ

Here,

ES ∝ Y
Z

½ð1 − νÞTrðā − aÞ2 þ νTr2ðā − aÞ�dS

and

EB ∝ Y
Z

½ð1 − νÞTrb2 þ νTr2b�dS

are the stretching and bending contents, respectively, where
Y and ν are the Young’s modulus and Poisson ratio,
respectively, and dS ¼ ffiffiffiffiffiffiffiffiffiffi

det ā
p

dudv is the intrinsic area
measure. When ā is nonflat (the reference Gaussian
curvature associated with it, via Gauss’s Theorema
Egregium, satisfies K̄ ≠ 0), these two terms are incompat-
ible: the elastic energy does not vanish in any configura-
tion, and equilibrium configurations are set by the
competition between the bending and stretching terms.
Some properties of incompatible elastic sheets can be

deduced from simple geometrical arguments: based on the
different scaling of the two energy terms, one can suggest
that thin enough ribbons will favor stretch-free configura-
tions, that is, embeddings of ā. One can go further and
show that if there exist embeddings of ā with finite bending
content, the limit configuration at t → 0will be the bending
minimizing embedding of ā [21]. Then, the elastic energy
takes the form [5]

E ≈ t3EB ¼ t3
Y

24ð1þ νÞ
Z �

4H2

1 − ν
− 2K̄

�
dS; ð2Þ

where H is the mean curvature of the configuration, under
the constraint K ¼ K̄. Therefore, the bending minimizing
embedding is the one that minimizes

R jHjdS under this
constraint.
The specific NEP we consider in this work is a non-

Euclidean minimal spring—a non-Euclidean ribbon with a
reference metric of a helicoid. This metric can be written as

ā ¼
�
p̄2 0

0 p̄k−1

�
; k ¼ p̄−1

1þ ðR̄þ vÞ2 ; ð3Þ

where p̄ is its only length scale, which can arbitrarily be set
to 1. Here, vmin ≤ v ≤ vmax is the radial coordinate and R̄ is
the radius at v ¼ 0. The width of the ribbon is defined
intrinsically, i.e., W ¼ vmax − vmin and its reference
Gaussian curvature is given by K̄ ¼ −k2.
When considering a set of configurations of a stretched

NEMS we recall that a catenoid can be continuously
deformed into a helicoid [22]. Members of the helicoid-
catenoid family (HCF) [22] are all helical, and are
characterized by their pitch 0 ≤ p ≤ 1 (Fig. 1).
Interestingly, all the members of the HCF are isometric,
implying that a catenoidlike NEMS can be extended all the
way to a helicoid while keeping a ¼ ā, i.e., without
stretching. Moreover, all the members of this family are
minimal surfaces, having a zero mean curvature [22]; i.e.,
they are embeddings of ā, having the absolute minimum
bending content. Therefore, the pitch p of a NEMS can be
varied between 0 and 1 while simultaneously keeping the
zero stretching condition aðpÞ ¼ ā and the minimal bend-
ing condition HðpÞ ¼ 0. The bulk elastic energy, as it
appears in Eq. (2), is therefore degenerate with respect to
changes in p. That is, elongating or compressing the helical
ribbon does not change its bulk energy.
The apparent degeneracy with respect to p is removed

only by boundary layer effects. These can be estimated via
global geometric considerations as well. A more elaborate
study shows that for any finite thickness, the real energy-
minimizing configuration of a NEP is not an exact
embedding of ā. It was shown that narrow boundary layers
appear along the ribbon’s edges [23]. Within these layers,
the component of the curvature perpendicular to the edge,
k⊥, is decreased. (Note that when solving the equilibrium
equations of forces and torques in the sheet, this condition
appears as the imposed zero normal torque boundary
condition). The scaling of the width of these boundary
layers is

FIG. 1. A realization of the HCF. (a) An example of a few
members of the HCF. These embeddings have pitch values of
p ¼ 1; 0.9; 0.7; 0.4; 0 (left to right). The number of turns is
conserved under this transformation. The red curve in each
surface is the midline, which is a helix with a radius
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̄2 þ 1 − p2

p
. (b) A detailed example of an embedding

with p ¼ 0.4. The radial and azimuthal coordinates (v and u,
respectively) are denoted along with the radius R and the pitch p.
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Wb ∝ t1=2k−ð1=2Þ⊥ : ð4Þ

For thin sheets, this effect is small and is usually neglected.
However, for a NEMS, the two commonly dominant
energy terms are degenerate; hence, it is this weak effect
that gives it its rigidity. It is straightforward to show that for
HCF surfaces

k⊥ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

q
; ð5Þ

where k0 is the value of k on the edge. Therefore, as the
pitch is increased, k⊥ approaches zero and the boundary
layers become less effective, leading to an increase in the
ribbon’s energy. It follows from Eqs. (2) and (4) that the
reduction in the elastic energy within the boundary layer
scales as t7=2k3=20 . This scaling law of the energy sets the
rigidity of the minimal spring. Since the rigidity stems from
variations only within the boundary layer, it does not
depend explicitly on the ribbon’s width.
Consequently, the energy depends on the pitch, but with

an anomalous scaling law

EðpÞ∝ t7=2
�
k3=2in þk3=2out

�
ðð1−νÞp2þ1þνÞ5=4þE0

≈
�
ð1þνÞ5=4þ5

4
ð1−νÞð1þνÞ1=4p2þ 5ð1−νÞ2

32ð1þνÞ3=4p
4

�

×t7=2
�
k3=2in þk3=2out

�
þE0; ð6Þ

where E0 is the degenerate bulk energy, and kin and kout are
the values of k0 on the inner and outer edges, respectively.
Looking at this expression, three anomalous properties of
NEMSs become clear. The rigidity of such springs scales as
κ ∝ t7=2, a higher power of t than for regular ribbon springs.
Therefore, the minimal springs are ultrasoft. In addition,
there is no explicit dependence of the energy on the
ribbon’s width W. This leads to the conjecture that springs
of different widths have the same rigidity. This means, for
instance, that cutting such a spring along the midline will
result in two springs, each with a rigidity similar to that of
the original one. In fact, as shown below, the rigidity might
even slightly decrease when the ribbon’s width is increased.
Such an unusual property is a direct result of the fact that
the bulk energy of the configurations of different pitch
values is degenerate. Finally, Eq. (6) indicates the extended
linearity of NEMSs. For ν ¼ 1

2
the ratio between the

coefficients of the quartic terms and the quadratic terms
is 1

24
compared to 1

4
for the equivalent coefficients of a

simple ribbon spring (see the Supplemental Material [24]).
In order to verify these predictions numerically, we

perform a simulation of a constrained NEMS—minimizing
Eq. (1) on a one-dimensional grid (see the Supplemental
Material [24]). We exploit the helical symmetry of the
elastic problem to reduce the dimensionality of the

simulation domain, finding the optimal radial profile for
a given pitch.
We find that in the bulk, the configurations remain close

to the relevant embeddings of ā (the relevant HCF
member), having vanishing bulk stretching energy, while
deviations from ā are confined to the boundary layers
(Fig. 2). As discussed earlier, the magnitude of each
boundary layer depends on the pitch. It is most significant
at p ¼ 0 (Fig. 2, square symbols) and disappears at p ¼ 1
(circles). In order to estimate the bending energy on the
edge, it is sufficient to find the value of k⊥ by mini-
mizing the integrand in Eq. (2) [25], leading to k⊥ ¼
−νk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
. For the catenoid, k⊥ coincides with one of

the principal reference curvatures; hence, the bending
energy on the edges is reduced by a factor of 1þ ν=2
(see the Supplemental Material [24]). This factor increases
with p, approaching 1 for p ¼ 1. These predictions are
quantitatively confirmed (Fig. 2, inset).
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FIG. 2. The stretching (top) and bending (bottom) energy
densities as functions of v, the radial coordinate, for different
values of p (p ¼ 1, circles; p ¼ 0.7, triangles; p ¼ 0, squares—
see the configurations in Fig. 1). The energy densities are plotted in
dimensionless units, that is, normalized by Yp̄. The bending
energy density of an isometric embedding is indicated (black line
at the bottom panel). Both the inner and outer boundary layers are
apparent for the lower pitch values and disappear for p ¼ 1. As
predicted, the ratio between themeasured bending energydensities
on the edges and those of the isometric embedding is 1 for p ¼ 1
and approaches 3

4
for p → 0 (inset of the bottom panel). These

results were obtained for t ¼ 0.02, W ¼ 1, and R̄ ¼ 1.
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The global minimum of the energy is obtained for p ¼ 0
as predicted, and the energetic cost of the spring elongation
is quadratic to a high degree in the regime 0 < p <
0.8 (Fig. 3).
Hence, the rigidity κ of the ribbon is well defined by

fitting a parabola to the energy. Measurements of κ for
ribbons of different thickness confirm the predicted ultra-
soft power law of κ ∝ t7=2 (Fig. 4).
In order to verify the prediction that the rigidity does not

depend on the ribbon’s width, we compute the rigidity

versus the thickness for different values ofW. The rigidities
of NEMSs of different widths are indeed nearly indistin-
guishable (Fig. 4, main graph). A more detailed analysis
shows that in fact there is a small variation of the rigidity
with the width. Surprisingly, the rigidity is a decreasing
function of the width; i.e., wider springs are softer than
narrow ones (Fig. 4, inset). This contraintuitive property,
which cannot occur in compatible springs, can be explained
quantitatively. The elastic energy in the boundary layers
scales as k3=20 , where for HCF surfaces it is given by
Eq. (3). Therefore, increasing the outer radius vmax will
cause the rigidity to decrease: κ ∝ k3=2o þ const ¼ ½1=1þ
ðR̄þ vmaxÞ2�3=2 þ const, where the constant stands for the
contribution of the inner boundary layer. Our data present a
good agreement with those predictions (Fig. 4, inset). For
large widths, the constant contribution dominates κ, as
predicted.
This study highlights the unusual mechanical properties

of incompatible elastic sheets under constraints. These
unusual properties result directly from geometrical incom-
patibility. In non-Euclidean sheets only a reference metric
is determined, rather than a configuration; thus, they
usually have a wide and shallow energy landscape. This
allows relatively soft deformations between configurations
that differ mainly in their bending energy [6]. In the unique
case of the non-Euclidean minimal spring, both the
stretching and bending bulk terms of the energy are
completely degenerate over any equilibrium configuration.
By addressing the hierarchy of the energy terms, i.e.,
stretching energy, bending energy, and boundary layer
energy, we derived quantitative predictions for these
unusual mechanical properties. These predictions were
confirmed by a numerical study and the first experimental
realizations of non-Euclidean minimal springs were con-
structed from selectively cross-linked responsive gels (see
the Supplemental Material [24]). It is very likely that
further study of other cases of constrained non-
Euclidean plates will reveal mechanical structures with
surprising properties. Such structures are not yet used in
man made constructs, but are likely to appear naturally in
biological and chemical systems.
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