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We examine the phase evolution of a Bose-Einstein condensate of photons generated in a dye
microcavity by temporal interference with a phase reference. The photoexcitable dye molecules constitute a
reservoir of variable size for the condensate particles, allowing for grand canonical statistics with photon
bunching, as in a lamp-type source. We directly observe phase jumps of the condensate associated with the
large statistical number fluctuations and find a separation of correlation time scales. For large systems, our
data reveal phase coherence and a spontaneously broken symmetry, despite the statistical fluctuations.
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At the heart of Bose-Einstein condensation, the phase
transition of a cold and dense gas of integer spin (bosonic)
particles to a macroscopically populated ground state, is its
phase coherence [1,2]. While for a thermal, incoherent
ensemble each particle evolves individually, in a Bose-
Einstein condensate the macroscopic ground state occupa-
tion leads to the whole condensate acting as a single, giant
quantum wave. Each individual measurement will then
yield a fixed, though random phase, as expected from
spontaneous symmetry breaking [3–5]. The macroscopic
phase of Bose-Einstein condensates has been verified in
interference experiments with ultracold atomic gases [6].
For condensates of polaritons, mixed states of matter and
light, polarization symmetry breaking was reported [7,8],
while polariton arrays have shown phase locking [9].
Further, spatial coherence has been reported for equilibrium
photon condensates [10] and also in a nonequilibrium
regime [11]. Both atomic and polariton condensates are
usually assumed to emit a single wave train of constant
amplitude [1,12]. They operate with an essentially fixed
number of particles, corresponding to a description in the
microcanonical or canonical ensemble limit. Such sources
have both first- and second-order coherence.
The predictions by statistical physics dramatically

change for Bose-Einstein condensates that are subject to
particle (and heat) exchange with a reservoir. In the grand
canonical statistical ensemble, the population of each
energy state of the Bose gas performs uncorrelated number
fluctuations of order of its mean occupation number [13].
When applied to the macroscopically occupied ground state
of a Bose-Einstein condensate, this implies large statistical
number fluctuations of order of the total particle number
occurring deep in the condensed phase, a behavior termed
the “grand canonical fluctuation catastrophe” [14–18].
Experimentally, grand canonical conditions in the con-
densed phase have been realized in a photon Bose-Einstein
condensate coupled to a dye medium [19,20], where
thermalization of the photon gas is achieved by absorption

and reemission processes on dye molecules [21–23]. The
photoexcitable dye molecules here do not only act as a heat
reservoir for the photon gas, but also as a particle reservoir;
thus, the number of condensate particles can fluctuate
around a mean value. For large reservoir sizes, strong
photon number fluctuations in the condensed phase, as
predicted by statistical theory [24,25], have been exper-
imentally verified in the dye microcavity system [26].
Condensates in the grand canonical ensemble limit have a
vanishing second-order coherence, corresponding to a zero-
delay intensity correlation gð2Þð0Þ ¼ 2, same as incoherent
sources, such as lamps, have [27]. Correspondingly, the
question arises whether the macroscopic ground state
occupation leads to phase coherence despite large statistical
fluctuations.
The essential physics of a grand canonical source in the

condensed phase can be modeled by a wave train of
variable amplitude [see Fig. 1(a)], subject to statistical
amplitude fluctuations due to the interconversion between
condensate particles and dye electronic excitations. In
general, the photon statistics interpolates between
Poissonian statistics for small reservoir sizes and a Bose-
Einstein distribution for an infinitely large reservoir
[24,26]. While for Poissonian statistics damped intensity
fluctuations and macroscopic phase coherence of the
condensate are expected [28–31], for the latter distribution
the fluctuations become as large as the average photon
number n̄, i.e., Δn ¼ n̄. Therefore, both in the grand
canonical and intermediate statistical regime, there is a
finite probability P0 that the cavity contains no photons at
all, which causes the condensate population nðtÞ to occa-
sionally drop to zero intensity. When the cavity now
resumes emission, as indicated in the right panel of
Fig. 1(a), the condensate phase will be lost.
In this Letter, we experimentally examine the temporal

phase evolution of a Bose-Einstein condensate of photons
realized in a dye microcavity by beating its emission
with the output of a narrow band laser source. While a
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phase-stable interference signal is monitored in the canoni-
cal statistical regime of the photon condensate, when tuning
towards the grand canonical limit, intensity fluctuations
lead to phase jumps in the interference signal. The
measured oscillation resumes with a random phase, as a
consequence of symmetry breaking following spontaneous
emission. The observed phase jump rate scales linearly
with the inverse system size, suggesting full first-order
coherence in the limit of large condensates despite photon
bunching, i.e., gð2Þð0Þ > 1, and we observe separate time
scales of first- and second-order coherence. Our findings
reveal realization of an optical source with unusual coher-
ence properties.

A schematic of the apparatus used to generate Bose-
Einstein condensation of a two-dimensional photon gas,
which has been described in detail in Ref. [10], is shown in
Fig. 1(b). Our experiment confines photons in a dye-
solution-filled microcavity made of two curved mirrors
spaced by 1.4 μm [19,32]. The small cavity length con-
stitutes an energy separation of longitudinal modes com-
parable to the spectral width of the dye emission, which
reduces the photon dynamics to the transverse motional
degrees of freedom with the longitudinal wave number
(q ¼ 7) remaining fixed. Effectively, this introduces a low-
energy cutoff of ℏωc, corresponding to a wavelength
typically selected to be in the range of 560–610 nm, and
imprints a spectrum of cavity photon energies restricted to
well above the thermal energy with nonvanishing chemical
potential [see Fig. 1(c)]. To both introduce an initial cavity
photon population and compensate for losses, the dye is
pumped with an external laser beam. By repeated absorp-
tion reemission processes, the two transversal cavity modal
quantum numbers thermalize to the (rovibrational) dye
temperature T ¼ 300 K, while the thermalization process
conserves the longitudinal mode number. When spectrally
monitoring the cavity photons, we observe a thermal
distribution of photon energies above the low-energy cut-
off, which extends over a range of more than 3kBT [see
Fig. 1(c)]. Despite pumping and losses, the photon gas is
well described by an equilibrium distribution as thermal-
ization by dye absorption and reemission occurs faster than
the time scale at which a photon is lost [21–23]. The photon
gas inside the resonator has a quadratic dispersion and is
formally equivalent to a two-dimensional gas of harmoni-
cally confined massive bosons [21,32], such that Bose-
Einstein condensation is expected to occur [36]. When
increasing the total cavity photon number above a critical
value (Nc ≃ 80000 for the used parameters), in addition to
the thermal cloud, a macroscopic population of the cavity
ground mode is observed; see Fig. 1(c) for spectra of the
Bose-Einstein condensed photon gas [19,20]. In the course
of thermalization, photons are frequently converted into
dye electronic excitations and vice versa, and the dye acts
both as a particle reservoir and a heat bath for the photon
gas [Fig. 1(a), left] [24,26]. This situation allows the photon
number in the cavity ground mode to fluctuate around the
average value n̄ [Fig. 1(a), right]. In contrast to earlier
studies, we are here interested in the phase evolution of a
photon Bose-Einstein condensate in the presence of those
statistical number fluctuations. In particular, the relation
between first- and second-order coherence is studied, with
an emphasis on the corresponding time scales and their
behavior when approaching the limit of large condensate
fractions upon conservation of the fluctuation level

Δn=n̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þð0Þ − 1

q
.

To measure the condensate phase evolution, radiation
transmitted through one cavity mirror is spatially filtered in
the far field to suppress thermal modes. The unpolarized
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FIG. 1. (a) Representation of the statistical system (left), where
dye molecules act as heat bath and particle reservoir for the
photon gas. When the effective reservoir size Meff is large, grand
canonical statistical conditions are fulfilled and the corresponding
emission (right) exhibits photon bunching and random phase
jumps following intensity drops. (b) Overview of the exper-
imental setup. From the emission out of the dye-filled micro-
resonator, the condensate mode is filtered, and after a polarizer
overlapped with the laser reference. The resulting beat signal is
detected on a photomultiplier tube (PMT). Simultaneously,
radiation transmitted through the second cavity mirror at the
reverse side is used to record spectra of the photon gas.
(c) Experimental (circles) and theory (lines) spectra of the cavity
emission show the saturation of thermal modes at the onset of
condensation and, with the known critical photon number at the
condensation threshold, allow us to determine the condensate
mode population n̄. (Cutoff energy ℏωc ¼ 2.13 eV).
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condensate emission passes a polarizer and is overlapped
with radiation of a dye laser. The dye laser with a linewidth
of 250 kHz here serves as a stable phase reference, and the
phase evolution is encoded in the temporal interference
between the light sources. For this, both sources are
coupled into a single mode (SM) fiber and the resulting
beat signal is detected with a fast photomultiplier (0.6 GHz
bandwidth) and monitored with an oscilloscope operating
in fast frame mode. The resulting interference signal can be
written as

IðtÞ ¼ Ic þ Il þ 2
ffiffiffiffiffiffiffiffiffi
IcIl

p
cos ½ðωc − ωlÞtþ ΔϕðtÞ�; ð1Þ

where Ic (Il) and ωc (ωl) denote the intensities and
frequencies of the photon condensate (dye laser) beam,
respectively, at the fiber output and ΔϕðtÞ is the relative
phase. In addition to serving as a local oscillator, the use of
an external optical source as phase reference avoids the
possible influence of phase locking between nearby placed
sources, an effect observed, e.g., in polariton arrays [9]. Our
detected beat signals [see, e.g., Fig. 2(a)] show a relatively
slow frequency chirp attributed to a density modulation of
the dye solution after the onset of the pumping pulse, as
detailed in the Supplemental Material [32]. The condensate
linewidth is thus expected to be composed of contributions
from both the frequency drift and a small Schawlow-
Townes-like phase diffusion [29], as well as from discrete
phase jumps owing to statistical number fluctuations. To
obtain the latter contributions, the recorded beat signals are
analyzed for irregularities in their oscillation period by an
algorithm, which was tested to allow detection of discrete
phase jumps with phase rotations in the range of
Δϕ ¼ ½0.2π; 1.8π�. Experimentally, phase jump rates (num-
ber of phase jumps per time interval) ranging from 5 to
200 μs−1 are resolved.
The main plots in Fig. 2 give three different beat signals,

recorded with condensates of different levels of number
fluctuations, indicated by gð2Þð0Þ, for which different
condensate sizes were used. The insets result from a second
run with only the dye microcavity emission irradiating on
the photomultiplier detector, allowing a determination of
the level of intensity fluctuations for a corresponding data
set, from which the second-order coherence function gð2ÞðτÞ
is determined. For essentially second-order coherent light
[Fig. 2(a), gð2Þð0Þ ¼ 1.01], we find a beat signal with no
observable phase jumps. Figures 2(b) and 2(c) give signals
recorded with condensates of larger intensity fluctuations,
with gð2Þð0Þ ¼ 1.33 and 1.93, respectively, which show an
irregular beat signal with clear phase jumps in the oscil-
lation, as indicated by the shaded areas. The associated
rotation angles of the condensate phase, indicated by
arrows on top of Fig. 2(b), are determined from a fit to
the beat signal in the vicinity of phase irregularities, as
exemplified in the inset of Fig. 2(b). We attribute the
increasing phase jump rate of those condensates to the here

enhanced probability for the condensate photon number to
drop below that required to maintain phase coherence. On
the other hand, the time scale for intensity fluctuations here
remains almost constant, indicating a separation of coher-
ence time scales. Figure 2(d) shows a distribution of
observed phase angles, which follows the expected Uð1Þ
symmetry within the detection window. Upon reestablish-
ment of the condensate emission, the new oscillation
resumes with an arbitrary phase.
For a quantitative analysis of the time scales, the solid

symbols in Fig. 3(a) show the rate of the observed phase
jumps versus the number of condensate photons for three
different effective reservoir sizes, here tuned by varying the
detuning between the condensate frequency ωc and the dye
zero-phonon line at ωZPL ¼ 2πc=ð545 nmÞ. A smaller
detuning increases the effective reservoir size Meff ¼
M=f2þ 2 cosh ½ℏðωc − ωZPLÞ=kBT�g with M as the num-
ber of dye molecules, as it increases the average number of
electronically excited dye molecules when the average
photon number in the condensate is retained [24,26].

FIG. 2. Temporal interference signals between photon con-
densate and dye laser, for average condensate photon number
of (a) 114000, (b) 8300, and (c) 3700, respectively, realizing
different levels of statistical number fluctuations (dye
concentration ρ ¼ 3 × 10−3 mol=l, cutoff wavelength λc ¼
582 nm); the insets give condensate intensity traces for the
corresponding parameters. The shaded areas show phase jumps
detected by our algorithm, increasing in rate from (b) to
(c). The shown values for the phase angles of the oscillation were
obtained by fitting the beat signal in the vicinity of the phase
jumps; see the inset on the right-hand side of (b) for an example.
The smallest phase rotation detectable by our algorithm is 0.2π.
(d) Histogram of observed phase jump angles along with a fit of
the detection window (solid line).
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Correspondingly, we observe the persistence of statistical
number fluctuations up to larger condensate populations n̄
[see Fig. 3(b)]. The phase jump rate ΓPJ increases both for
larger effective reservoirs and smaller numbers of con-
densate photons (system size). This is well understood from
the larger probability in these cases to reach a very small
number of photons which cannot anymore sustain phase
coherence of the condensate. In a heuristic approach, we
expect the phase jump rate to follow the rate Γ0

PJ ¼ P0MB̂12

for a vanishing photon number in the cavity, where B̂12 is
the Einstein rate coefficient for absorption. The zero-
photon probability P0 is obtained from numerical calcu-
lations [32], and the corresponding results for Γ0

PJ are
shown as solid lines in Fig. 3(a). We are aware that small,
but nonzero, photon numbers can also lead to phase jumps.
However, the good agreement with the experimental results
indicates that Γ0

PJ captures the essential physics. This is
supported by our Monte Carlo simulations [32], which are
also in agreement with the scaling for the condensate
linewidth predicted for the grand canonical limit [30]. For
comparison, the open symbols in Fig. 3(a) show the inverse
of the observed second-order coherence times along with
theory (dashed lines) [32]. Clearly, a separation between
the shown time scales characterizing first- and second-order
coherence, respectively, is observed in the presence of
strong photon bunching. Although our analysis does not
capture diffusive linewidth contributions, our finding is in
clear contrast to predictions for chaotic light, for which the

two time scales are identical [27]. This shows that despite
the large statistical number fluctuations, a spontaneously
broken symmetry exists.
We next address the question of the phase stability of a

flickering condensate expected in the limit of an infinitely
large photon number (n̄ → ∞). To reach this limit, we here
besides the condensate size additionally increase the
reservoir size such that the fluctuation level remains fixed,
i.e., gð2Þð0Þ ¼ const, which from theory is expected for a
fixed ratio n̄2=Meff [24,32]. Figure 4(a) shows the variation
of the phase jump rate on the measured zero-delay
correlation function gð2Þð0Þ for three different reservoirs.
From this data, we extract the phase jump rate as a function
of the inverse condensate size (1=n̄) for three fixed values
of the measured zero-delay second-order coherence func-
tion gð2Þð0Þ [see Fig. 4(b)]. The data points for the
extrapolation all are in a regime with n̄2 ≥ Meff where
a separation of time scales for ΓPJ and 1=τð2Þc was observed
[Fig. 3(a)]. We point out that in the far grand canonical case
n̄2 ≪ Meff , for which gð2Þð0Þ approaches 2 and ΓPJ≃
1=τð2Þc , we also do not expect a separation of time scales
in the thermodynamic limit. For the shown data [see
Fig. 4(b)], a linear extrapolation to an infinitely large
condensate (1=n̄ → 0) indicates a vanishing phase jump
rate for all three shown data sets, with gð2Þð0Þ ¼
1.59ð18Þ; 1.18ð9Þ, and 1.02(1), respectively. Even if macro-
scopic phase coherence is never lost, amplitude modulation
of the oscillator will lower the degree of the first-order
coherence and result in a finite linewidth also in the limit of
an infinitely large system.
To conclude, we have observed spontaneous symmetry

breaking in an optical condensate with bunched number

FIG. 3. (a) Separation of time scales for first- and second-order
coherence. Inverse second-order coherence times 1=τð2Þc (open
symbols) and phase jump rates ΓPJ (solid symbols) for three
different effective reservoirs Meff , of relative size f1; 10; 120g
indicated by violet circles, blue squares, and green triangles,
respectively, varied using the dye-cavity detuning ωc − ωZPL. For
the experimental parameter range, the observed phase jump rates
are significantly below the inverse second-order coherence time.
(b) Zero-delay autocorrelation gð2Þð0Þ versus condensate popu-
lation n̄ for the corresponding parameters. For an increased
effective reservoir size, photon bunching with gð2Þð0Þ > 1 is
maintained up to larger sizes of the Bose-Einstein condensate and
over a broad range coexists with separated values for ΓPJ and
1=τð2Þc . The shown lines in (a) and (b) are theory curves, for
M ¼ f2.0; 4.5; 5.0g × 109, B̂12 ¼ f140; 250; 1300gs−1.

FIG. 4. Coherence properties in the limit of large systems.
(a) Phase jump rate as a function of the zero-delay autocorrelation
gð2Þð0Þ for three different values of the dye-cavity detuning
ωc − ωZPL, which tunes the effective reservoir size Meff . The
inset shows the calculated value of the zero-photon probability P0

for the corresponding parameters. (b) Phase jump rate versus the
inverse condensate size 1=n̄ for data sets with three different
levels of intensity fluctuations (symbols), indicated by the
corresponding gð2Þð0Þ. A linear extrapolation n̄ → ∞ for all data
sets (dashed lines) suggests full phase coherence in this limit
despite the persistence of photon bunching.
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statistics. Our data reveal a separation of characteristic time
scales for first- and second-order coherence properties.
From a thermodynamic viewpoint, the observation of a
regime with a well-defined phase of the grand canonical
statistics condensate means that an order parameter exists
despite the large number fluctuations [37].
The results are expected to have direct implications for

studies of the Josephson effect and photonic lattices
building upon condensates coupled to both heat and
effective particle reservoirs, as realizable in the dye micro-
cavity system [38–43]. From a technical perspective,
speckle-free and other optical imaging can benefit from
grand canonical statistics light sources in the condensed
phase [44].
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