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Elastic collisions between initially unpolarized electrons and hydrogenlike atoms are discussed, aiming
to analyze the entanglement properties of the correlated final spin system. Explicit spin-dependent
interactions are neglected and electron exchange only is taken into account. We show the final spin system
to be completely characterized by a single spin correlation parameter depending on scattering angle and
energy. Its numerical value identifies the final spins of the collision partners to be either in the separable,
entangled, or Bell correlated regions. We emphasize explicit examples for the mixed spin system in order to
illustrate the abstract concepts. The analysis of published experimental and numerical data reveals the
possibility to create tunable pairs of collision partners with any desired degree of spin entanglement.
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Quantum entanglement is one of the most intriguing
phenomena in nature. It plays a crucial role in quantum
information and quantum computation and its determina-
tion in combined quantum systems is a basic task. Most
investigations so far utilized pairs of polarized photons,
giving key insights into fundamental quantum mechanics
[1,2]. More recently, entanglement properties between
electronic spins in photon-induced ionization have been
reported [3], while dissipative studies of the entanglement
dynamics give even rise to sudden death of entanglement
[4]. On the other hand, spin-dependent collisions between
electrons and atoms have been studied for many years with
increasing precision and efficiency, aiming to obtain
information on the scattering dynamics [5,6]. We suggest
supplementing these investigations by exploring entangle-
ment properties of the collision partners after the interation
and study the interrelation between scattering dynamics
and the creation of nonlocal correlations.
It is useful to start with a simple collision system that

allows for a most direct and transparent discussion of the
basic concepts. We therefore analyze collisions between
initially unpolarized electrons and unpolarized hydrogen-
like atoms having electronic spin-1=2. It is assumed that all
explicit spin-dependent forces can be neglected and only
electron exchange is taken into account. We investigate
under which conditions nonlocal spin correlations between
the scattering partners can be generated during the colli-
sion, starting from a maximally chaotic initial spin state. It
turns out that the spin-spin correlations of the final system
are completely characterized by a single dynamical param-
eter, while its numerical value determines whether the final
spin system is separable, entangled, or even Bell correlated;
i.e. it violates any of the Bell inequalities [7,8]. This allows
for the construction of explicit expressions of the final state
density matrix for the various outcomes, which is one of the
main aims of this research. Such studies unveil new
fundamental aspects of collisions, e.g., the completely

different nature of spin correlations for separable and
entangled states. Furthermore, our analysis of published
experimental and numerical data exhibits that Coulomb
plus exchange forces are even capable of generating Bell
correlated pairs out of an initially completely uncorrelated
system. This should allow creation of tunable pairs of
collision partners with any desired degree of spin
entanglement.
We describe the initial unpolarized state by the density

matrix ρin being an incoherent superposition of the equally
distributed spins of the first (electrons) and second particle
(atoms), respectively. The density matrix, characterizing
the final state after the scattering is given by ρ ¼ TρinTþ,
where T is the transition operator. Assuming scattering
angle and energy as fixed, and denoting the final state spin
components of the two particles byM andm, we obtain the
4 × 4 spin density matrix hM0m0jρjMmi in the explicit form

ρ¼ 1

8σ

0
BBBBB@

2jfð1Þj2 0 0 0

0 jfð1Þj2þjfð0Þj2 jfð1Þj2− jfð0Þj2 0

0 jfð1Þj2− jfð0Þj2 jfð1Þj2þjfð0Þj2 0

0 0 0 2jfð1Þj2

1
CCCCCA
;

ð1Þ

where fðSÞ denote the triplet (S ¼ 1) and singlet (S ¼ 0)
scattering amplitudes, respectively. Here, ρ is normalized
by the differential cross section σ ¼ 1

4
ð3jfð1Þj2 þ jfð0Þj2Þ,

and trρ ¼ 1. The spin density matrix Eq. (1) can be
completely characterized in terms of the two individually
measured polarization vectors Pð1Þ and Pð2Þ, referring to
particles 1 and 2 [9], and the nine direct product compo-
nents Pð1Þ

i × Pð2Þ
j of the spin-spin correlation tensor

ði; j ¼ x; y; zÞ, defined by the expression [10]

Pð1Þ
i × Pð2Þ

j ¼ trρðσi × σjÞ: ð2Þ
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The correlation parameters refer to experiments where both
scattered particles are measured in coincidence by two
observers. For example, Pð1Þ

z × Pð2Þ
z gives the outcome of an

experiment where both detectors are oriented along the z
direction [11]. The simple structure of the density matrix
Eq. (1) allows for quickly calculating the relevant param-
eters. The individual polarization vectors of the two
subsystems cancel, and the only nonvanishing spin corre-
lation parameters are

P ¼ Pð1Þ
i × Pð2Þ

i ¼ jfð1Þj2 − jfð0Þj2
3jfð1Þj2 þ jfð0Þj2 ; i ¼ x; y; z; ð3Þ

where we introduced the parameter P ¼ Pðθ; EÞ, which is a
function of scattering angle and energy. It is related to the
spin asymmetry Aex [12], via P ¼ −Aex, as follows from
the general equations [13]. Applying the tensorial proper-
ties of Pð1Þ

i × Pð2Þ
i one obtains for general directions a and b

of the two detectors Pð1Þ
a × Pð2Þ

b ¼ P cos β, where β is the
angle between a and b [10]. This and Eq. (3) exhibit the
rotational symmetry of the spin-spin system. A scheme of
an e-H spin correlation experiment is depicted in the
Supplemental Material [14]. Expressing the density matrix
Eq. (1) in terms of the spin correlation parameter Eq. (3),
we obtain

ρ ¼ 1

4

0
BBB@

1þ P 0 0 0

0 1 − P 2P 0

0 2P 1 − P 0

0 0 0 1þ P

1
CCCA: ð4Þ

From its structure, Eq. (4) represents a so-called X matrix,
with only diagonal and antidiagonal elements, which has
been used in the analyses of two-qubit quantum sys-
tems [4,15].
For a general scattering experiment, e.g., including spin-

orbit interaction and more general initial conditions, the
density matrix can depend on up to 15 independent
parameters. In contrast, for our system with unpolarized
initial particles, ρ only depends on the single parameter P
as shown in Eq. (4). In general, the values of the correlation
parameter are restricted to the region ½−1; 1�. From Eq. (3)
we get the further restriction −1 ≤ P ≤ 1

3
for our present

case of interest.
We now discuss under which conditions the mixed spin

state Eq. (4) is separable or entangled, or a combination of
both. Generally, a density matrix of a bipartite mixed state
is called separable if and only if it is possible to express it in
the form

ρ ¼
Xn
i¼1

pijaiihaij × jbiihbij; ð5Þ

where the pure one-particle states jaii and jbii refer to the
first (electron) and second (atom) particle, respectively. The
parameters pi ≥ 0 denote the relevant probabilities. If no
transformation of a given density matrix ρ to the form
Eq. (5) can be given, the system is said to be nonseparable

or entangled. Peres [16] and Horodecki et al. [17] derived a
convenient criterion which, in the case of a 4 × 4 density
matrix, yields a necessary and sufficient condition for
separability. For this, we construct the partial transpose
density matrix ρPT, where only the variables of one
subsystem are transposed: hM0m0jρPTjMmi ¼
hMm0jρjM0mi. A given density matrix ρ describes a
separable state if all eigenvalues of ρPT are positive. In
contrast, ρ describes an entangled system if at least one
eigenvalue is negative [16,17]. Calculating the eigenvalues
λi of ρPT yields

λ1;2;3 ¼
1

4
ð1 − PÞ and λ4 ¼

1

4
ð1þ 3PÞ: ð6Þ

Equation (6) indicates that all eigenvalues are positive for P
values in the range − 1

3
≤ P ≤ 1

3
, and that the scattering

matrix ρ is separable in this region. The density matrix ρ
describes an entangled system in the range −1 ≤ P < − 1

3
,

where λ4 becomes negative. The system is maximally
entangled for P ¼ −1, as depicted in Fig. 1.
Illustrating our somewhat abstract results by explicit

examples gives further insight. Decomposition of mixed
states is not unique. However, if it is possible to transform
the scattering matrix to the form of Eq. (5), then ρ is
separable. In general, this task is very cumbersome. In our
case of interest, though, it is simple, since the results Eq. (3)
provide the essential hint. We derive the results for positive
and negative values of P separately.
Inserting explicitly P ¼ jPj, we rewrite the spin density

matrix Eq. (4) by subtracting a term proportional to the
four-dimensional unit matrix. The remaining matrix can
then be expressed in terms of the three triplet states
jS ¼ 1Msi, with Ms ¼ −1, 0, 1, respectively. We obtain

ρ ¼ 1 − 3jPj
4

1þ jPj
X
Ms

j1Msih1Msj: ð7Þ

The unit matrix 1 describes a completely uncorrelated
mixture of states, e.g.,

1 ¼
X
i

jaibiihaibij; with ai; bi ∈ f↑;↓g; ð8Þ
where the two particles can be found in any of the four
separable states with equal probability 1

4
. The four states

occurring in Eq. (8) and the states j11i ¼ j↑↑i and
j1 − 1i ¼ j↓↓i in Eq. (7) are clearly separable, but the
Bell state j10i ¼ 1ffiffi

2
p ðj↑↓i þ j↓↑iÞ is maximally entangled.

One might assume that ρ is at least partially entangled, but

FIG. 1. Separable, entangled, and Bell correlated areas (see
text).
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Fig. 1 shows that ρ is separable for all allowed positive
values of P. We will now construct such a representation.
Guided by the results Eq. (3) for the correlation parameter,
we start by considering the spin density matrix

ρ1 ¼
1

6

X
i

j↑iih↑ij × j↑iih↑ij þ j↓iih↓ij × j↓iih↓ij; ð9Þ

where j↑ii and j↓ii denote particle states with spin-up ð↑Þ
and spin-down ð↓Þ with respect to the i axis (i ¼ x; y; z)
[18]. The state Eq. (9) is of the general form of Eq. (5) and
clearly separable. It can be prepared by two spatially
separated observers, commonly called Alice and Bob, in
an entirely classical way, i.e., by agreeing over the phone on
the local preparation of their respective states. For instance,
Alice prepares a subset of electrons locally in the state j↑xi.
She communicates this to Bob via a classical channel, e.g.,
phone. Then, Bob will prepare the corresponding subset of
his particles, hydrogenlike atoms, in the same spin state.
This operation is repeated for the other five states in Eq. (9).
The beams created by Alice and Bob remain spatially
separated without interaction. The total final spin system is
then described by the matrix ρ1, which contains the full
information on the system. Any mixed state that is prepared
in this way by local operations and classical communica-
tion (LOCC) contains correlated spins, but these correla-
tions are created entirely by classical means. By contrast,
LOCC cannot be used to create entangled states [2].
Calculation of the correlation parameters for ρ1 by means
of Eq. (2) yields the results Pi × Pi ¼ 1

3
and Pi × Pj ¼ 0,

for i ≠ j, with ði; j ¼ x; y; zÞ. The individual polarization
vectors vanish. In particular, we get Pa × Pa ¼ 1

3
, for any

direction a of the two spin detector systems. Comparing
this with Eq. (3), we see that the two spin systems have the
same rotational symmetry. Only the magnitudes of the
correlation parameters differ (Pi × Pi ¼ 1

3
in the case of ρ1

and 0 ≤ Pi × Pi ¼ P ≤ 1
3
for ρ). The correlations contained

in ρ1 can be reduced by mixing ρ1 with a completely
uncorrelated system, described by the 4 × 4 unit matrix
Eq. (8), until this mixture contains the same amount of
correlations as ρ. We obtain for the spin scattering matrix
Eq. (7) the expression

ρ ¼ 1 − 3jPj
4

1þ 3jPjρ1: ð10Þ

The mixing parameters follow from the condition that the
spin matrix Eq. (7) and the mixture on the right-hand side
of Eq. (10), both, must have the same trace and correlation
parameters. Remembering Eq. (5), we obtain from Eq. (10)
that the spin matrix ρ is separable if jPj ≤ 1

3
(see Fig. 1),

which is in accordance with the Peres-Horodecki criterion.
The essential point is that, on the left-hand side of Eq. (10),
we have the spin matrix Eq. (7) describing the spin
correlations between colliding pairs of spin-1=2 particles.
On the right-hand side, we have a mixture of 1 and ρ1,
which can be prepared by LOCC. Both systems, ρ and the

mixture, coincide in all measurable polarization and corre-
lation parameters and are therefore physically indistin-
guishable. Of course, there are many different ways of
preparing the same state ρ. But produced in a collision, the
important point is that the spin correlations of separable
systems can be reproduced entirely by a classical mecha-
nism. Hence, it is quite reasonable to state that separable
states contain no entanglement.
Now, we consider anticorrelated spins. Inserting P ¼

−jPj in Eq. (4) we can write the scattering matrix ρ in the
form of a Werner state [19],

ρ ¼ 1 − jPj
4

1þ jPjj00ih00j; ð11Þ

where j00i ¼ 1ffiffi
2

p ðj↑↓i − j↓↑iÞ is the singlet state.
The Werner state Eq. (11) represents a mixture of the
completely uncorrelated state Eq. (8) ∼1 (with amount
1 − jPj) and the maximally entangled singlet state. The
magnitude jPj of the correlation parameter plays the role of
a mixing parameter in the Werner state. From the Peres-
Horodecki criterion, it follows that the state Eq. (11) is
separable for 0 ≥ P ≥ − 1

3
(see Fig. 1). We illustrate this

result by explicit construction, following essentially the
same procedure as in the preceding case. Since the
correlations are negative, we consider the density matrix
ρ2 with anticorrelated spins,

ρ2 ¼
1

6

X
i

j↑iih↑ij × j↓iih↓ij þ j↓iih↓ij × j↑iih↑ij ð12Þ

(i ¼ x; y; z). As ρ2 is of the form of Eq. (5), it is separable
and hence can be prepared by LOCC. The only non-
vanishing components of the correlation tensor are given by
Pi × Pi ¼ − 1

3
ði ¼ x; y; zÞ. Repeating the steps from

Eq. (9) to Eq. (10) we can rewrite the Werner state
Eq. (11) in the explicit separable form (0 ≥ P ≥ − 1

3
)

ρ ¼ 1 − 3jPj
4

1þ 3jPjρ2: ð13Þ

Both sides of Eq. (13) are normalized and are characterized
by the same set [Eq. (3)] of correlation parameters. They are
therefore physically indistinguishable. The discussion fol-
lowing Eq. (10) applies directly to Eq. (13).
We now focus on the state Eq. (11) in the region

− 1
3
> P ≥ −1, where the spin scattering matrix is non-

separable or entangled. The amount of entanglement,
produced in the system ρ during the collision, can be
quantified using the concept of negativity [20,21], which is
based directly on the Peres-Horodecki criterion. The
negativity is defined as NðρÞ ¼ −2

P
ini, where the ni

are the negative eigenvalues of the partial transpose density
matrix ρPT. If all eigenvalues are positive, the correspond-
ing density matrix is separable, and NðρÞ vanishes. Thus,
NðρÞ “measures” the amount by which ρPT fails to be
positive definite, and it is intuitively sensible to use NðρÞ as
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a measure for the entanglement present in the system ρ
[21]. In our case of interest, only the eigenvalue λ4 in
Eq. (6) can become negative for P < − 1

3
. Hence,

NðρÞ ¼ −2λ4 ¼ 1
2
ð3jPj − 1Þ. NðρÞ is one for maximal

entanglement (P ¼ −1), and equals zero for zero entangle-
ment (P ¼ − 1

3
). The negativity is proportional to P, which

in turn depends on the collision dynamics. We can illustrate
these results by rewriting the Werner state Eq. (11) in the
form ð− 1

3
> P ≥ −1Þ

ρ ¼ ð1 − NÞρ2 þ Nj00ih00j; ð14Þ

where the contribution of the maximally entangled singlet
state is given by the negativity.
The representation of the spin density matrix ρ in terms

of Werner states [Eq. (11)] for negative correlation param-
eters P ¼ −jPj is related to Bell’s theorem [7]. Whereas
pure entangled spin-1=2 states are necessarily Bell corre-
lated [22], surprisingly, this is in general not the case for
mixed entangled states. Werner [19] proved that a state of
the form Eq. (11) is Bell correlated if the condition
P < − 1ffiffi

2
p is satisfied for the mixing parameter. Thus, as

depicted in Fig. 1, the spin density matrix is entangled in
the range − 1

3
> P > − 1ffiffi

2
p but does not violate any Bell

inequalities since the spin correlation in this region is not
sufficiently strong.
In order to get some insight into the relation between

collision dynamics and entanglement properties, we ana-
lyze published numerical and experimental data for the spin
asymmetry Aex, which we reinterpret in terms of spin
correlations (P ¼ −Aex). Several groups investigated spin-
dependent elastic e-H scattering; e.g., see Refs. [23–27]. In
the energy region studied (0.14–300 eV), however, the data
indicate that practically no entanglement can be created,
except at the lowest energies [26]; see the multipseudostate
close coupling (MPCC) data in Fig. 2 at E ¼ 0.14 ev.
Remarkable measurements have been performed on spin-
dependent elastic e-Na scattering by the NIST group
[28–32]. We have selected experimental data at 4.1 and
10 eV (see Fig. 2). For E ¼ 4.1 eV, the data reveal
pronounced entanglement effects between about 80° and
105° with a sharp minimum around θ ¼ 90°, with P≃
−0.87 and negativity NðρÞ≃ 0.81. These data are well in
the Bell correlated area. Even more striking are the results
for E ¼ 10 eV, where P decreases rapidly around θ ¼ 60°
to values near P ¼ −1. Here, the spins of the colliding pairs
form intermediately the maximally entangled singlet state,
and the Werner state Eq. (14) is dominated by the singlet
contribution with negativity NðρÞ ¼ 1. It is remarkable that
the values of P vary over the full allowed range from P ¼ 1

3

to P ¼ −1. These data are in excellent agreement with
convergence close coupling (CCC) [33–35] and coupled
channel optical (CCO) calculations [36], respectively
(Fig. 2). For energies around the 3p threshold (2.1 eV)
or higher, close coupling (CC) data are available [37].
Considerable degrees of entanglement can be generated;

e.g., for E ¼ 2.2 eV, we obtain P≃ −1 at θ≃ 107.5°.
Interestingly, similar behavior is observed in experimental
data on elastic e-Li scattering [38]. Here, the asymmetry
was measured as a function of the collision energy at fixed
scattering angles. For θ ¼ 107.5°, the correlation parameter
decreases rapidly to P ¼ −1 at 2p threshold (1.84 eV) and
remains low up to E≃ 4 eV. These data are in generally
good agreement with CCO calculations [39]. On the other
hand, for elastic e-Na scattering the NIST data reveal that
for E ¼ 1.0 and 1.6 eV, as well as for E ≥ 20 eV, practi-
cally no entanglement can be produced. The Li data show a
similar behavior.
In conclusion, we have discussed under which condi-

tions entanglement can be generated in collisions between
electrons and light, pseudo- (or truly) one-electron atoms,
both initially unpolarized. The areas where the spins of the
collision partners remain separable, or are entangled, or
Bell correlated have been identified and the entanglement
properties of the final spin system in the various regions
have been discussed and interpreted. Our analysis of
published numerical and experimental data on spin asym-
metries exhibits the remarkable result that Coulomb forces
plus electron exchange are capable of generating entangled
beams of spin-1=2 particles in the full entangled range
between P ¼ − 1

3
and P ¼ −1 out of initially totally chaotic

states. In particular, mixed collision states can be exper-
imentally produced which violate the Bell inequalities. By
studying asymmetry data, one can tune to a particular
scattering energy and angle and create pairs of collision
partners with any desired degree of spin entanglement, which
can then be used for further experiments. This might be of
interest for quantum communication or teleportation studies.

We are thankful to B. Langer (FU Berlin and GPTA
mbH) for helpful comments on the manuscript.
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FIG. 2. Correlation parameter P versus scattering angle θ for
different scattering energies and elements. Experimental data: Na
4.1 eV (triangle), Na 10 eV (circle), NIST group [31]. Numerical
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Bray [33,34]. Horizontal lines divide separable (S), entangled
(E), and Bell correlated (B) regions.
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