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Isomer shifts have been determined in 111–129Cd by high-resolution laser spectroscopy at CERN-
ISOLDE. The corresponding mean square charge-radii changes, from the 1=2þ and the 3=2þ ground states
to the 11=2− isomers, have been found to follow a distinct parabolic dependence as a function of the atomic
mass number. Since the isomers have been previously associated with simplicity due to the linear mass
dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of
symmetry affecting the ground states in addition. A comprehensive description assuming nuclear
deformation is found to accurately reproduce the radii differences in conjunction with the known
quadrupole moments. This intuitive interpretation is supported by covariant density functional theory.
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Complexity is known to dominate the nuclear state,
hence, sustaining the need for theoretical input to nearly
every experimental work in order to disentangle the nuclear
problem down to a set of basic concepts, e.g., shell
structure, pairing, “magic” numbers, deformation, etc.
However, in near-closed-shell nuclei, simple structures
may occur as a result of the spherical symmetry breaking
up. The cadmium isotopic chain studied here appears to
provide one such instance of simplicity.
Already in 1949, Brix and Kopfermann [1] pointed out

the connection between the anomalous isotope shift sepa-
rating 150Sm and 152Sm, observed for the first time by
Schüler and Schmidt in 1934 [2], and the jump of the
quadrupole moment between 151Eu and 153Eu. Since then,
the importance of looking at nuclear charge radii was
further highlighted in the measurements of the neutron-
deficient mercury isotopes [3] where shape staggering and
shape coexistence generate sizable changes in the charge

distribution between neighboring isotopes [4,5] or states in
the same nucleus [6]. Thus far, radial changes of such
magnitude appear to be uncommon, the other prominent
examples being the halo structures in light nuclei [7–11]
and the onset of deformation at N ¼ 60 [12–16]. Cadmium
and mercury are analogues in terms of their charge
distributions since both incorporate an open shell with
two protons less than a magic number, respectively, Z ¼ 50
and Z ¼ 82. Despite the similarities, the cadmium case
presented here shows no abrupt changes of the nuclear size.
Instead, one observes a small-to-moderate effect on the
radii characterized by regularity which may be attributed to
the unique-parity h11=2 orbital.
In this Letter, we report on the simplicity of high-precision

isomer shifts derived from collinear laser spectroscopy on the
neutron-rich cadmium isotopes towards the N ¼ 82 shell
closure.A comprehensivemodel resting on some of the basic
concepts in nuclear physics suggests an apparent link
between the 11=2− radii and quadrupole moments. The
credibility of such an interpretation is examined quantita-
tively within a relativistic mean field calculation.
The work was carried out with the collinear laser

spectroscopy setup at the CERN-ISOLDE radioactive-
beam facility. Of interest were the odd neutron-rich
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cadmium isotopes whose long-lived isomeric states were
readily available as a component in the beam. Most of the
measurements were conducted in the cadmium ion in order
to benefit from an exceptionally high sensitivity in the
5s 2S1=2 → 5p 2P3=2 transition at 214.5 nm [17]. Beam-
purity improvement by multiple orders of magnitude was
achieved by the use of a neutron converter [18], a quartz
transfer line [19], and by resonant laser ionization [20].
Significant background suppression in the fluorescence
measurements derived from ion-beam bunching [21,22].
Ground states and isomers were recorded in the same
spectrum allowing for a direct measurement of the isomer
shift independent of most experimental uncertainties. The
work in the ionic system was supported by spectroscopy in
the transition 5s5p 3P2 → 5s6s 3S1 of the atom at
508.7 nm [17]. The experimental details of both measure-
ments have been previously described in Refs. [23,24]
which are reporting on a different aspect of the data.
The isomer shifts in 111–129Cd are being presented for the

first time. The precision of the measurements requires
comment, as the studied effects are about 3 orders of
magnitude smaller than the hyperfine structure and, in most
cases, are appreciably smaller than the natural linewidth.
Hence, this study can only be conducted with high
resolution. An example spectrum of 123Cd is presented
in Fig. 1 where one can acknowledge the relative scale. The
following equation relates the nuclear mean square charge-
radius change δhr2ig;m ¼ hr2im − hr2ig to the isomer shift:

δνg;m ¼ νm − νg ¼ Fδhr2ig;m: ð1Þ
Here, F is the electronic factor related to the change in the
total electronic charge density at the site of the nucleus. The
term taking into account the difference in mass between the
two states is omitted for simplicity since it is negligible with
respect to the statistical uncertainty. The atomic masses are
still critical for determining the ion-beam velocities since
they enter implicitly in the measured Doppler-shifted
frequencies. The experimental isomer shifts and thus
obtained differential charge-radii changes are presented
in Table I. For most of the studied isotopes, the atomic

masses of both states are well known [25,26], largely as a
result of high-precision Penning-trap measurements
[27–29]. In 127Cd and 129Cd, accurate data exist only for
one state [30], and therefore, the level ordering is exper-
imentally unknown. With that in mind, we assign the
notation “m” to the 11=2− state and “g” to the lower-spin
state, either 1=2þ or 3=2þ, coupled to the terms “isomer”
and “ground state” even for the latter two cases. Following
the systematics in the lighter isotopes, the isomeric exci-
tation energies in 127Cd and 129Cd are assumed to be within
a range of �200 keV. The above considerations contribute
an estimated 0.9 MHz to the final uncertainties. The isotope
shifts and the known rms charge radii of the stable isotopes
[31] have been analyzed by a King-plot procedure estab-
lishing the electronic factors in Table I. The relative
uncertainties of those are similar at 8% since the measure-
ments in both transitions are referenced to the same set of

FIG. 1. Spectral lines of 123Cd relative to the excitation frequency of 114Cd in the ionic transition 5s 2S1=2 → 5p 2P3=2. The hyperfine
structure is comprised of a 3=2þ ground state and an 11=2− isomer. The centroids of both states with their statistical uncertainties, as
determined by the fit, are shown in the magnified range.

TABLE I. Isomer shifts and differential mean square charge
radii of 111–129Cd in the 214.5 nm and 508.7 nm transitions of
Cd II and Cd I, respectively. Statistical uncertainties are quoted in
parentheses. Square brackets denote systematic uncertainties
reflecting the accuracy of the electronic factors.

5s 2S1=2 → 5p 2P3=2 5s5p 3P2 → 5s6s 3S1

δνg;mII δhr2ig;m δνg;mI δhr2ig;m
A (MHz) (μb) (MHz) (μb)

111 −167.5 (9) 272 (2) [21] 31.5 (10) 258 (8) [20]
113 −65.8 (10) 107 (2) [8] 13.8 (8) 113 (6) [9]
115 10.1 (9) −16 (2) [1] −2.0 (10) −16 (8) [1]
117 45.3 (17) −74 (3) [6] −7.2 (6) −59 (5) [5]
119 47.9 (9) −78 (2) [6] −9.7 (9) −80 (7) [6]
121 31.1 (23) −50 (4) [4] −6.6 (10) −54 (8) [4]
123 17.5 (20) −28 (3) [2] −5.1 (16) −42 (13) [3]
125 −13.9 (13) 23 (2) [2]
127 −119.6 (26) 194 (4) [15]
129 −235.5 (60) 382 (10) [30]

FII ¼ −0.62 ð5Þ MHz=μb FI ¼ 0.12 ð1Þ MHz=μb
FII=FI ¼ −5.2 ð2Þ
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radii. Correspondingly, an 8% systematic uncertainty is
associated with all mean square charge-radii changes in the
table. The ratio of the electronic factors, being a straight-
forward ratio of the corresponding isomer shifts, is deduced
with a higher precision of 4%. Because of the larger
electronic factor, the proportionally larger isomer shifts
in the ionic transition dominate the mean square radii
changes with smaller uncertainties. The results in the two
transitions are statistically consistent. A larger difference of
2.6 standard deviations for 117Cd is potentially caused by
random photomultiplier bursts affecting the hyperfine
structure of the isomer in the ionic spectrum.
The experimental results are plotted in Fig. 2, where a

strikingly simple parabolic trend appears to characterize the
differential mean square charge radii as a function of the
atomic mass number. To our knowledge, no such clear
dependence has ever been observed or discussed before.
Furthermore, there is no apparent resemblance of this effect
to be found in the mercury analogues [3]. It is reasonable to
assume that the present feature is not unique to the
cadmium species, but it is likely a general phenomenon
that is relevant under common circumstances. In support of
this assertion, we consider below a simple model which
reproduces the data with remarkable accuracy, and we tie
this model to complementary experimental data on the
same nuclides. The high experimental precision may be a
key factor for making this discovery in the cadmium
isotopes and not in the lower-resolution data of tin [32]
and lead [33] where, in principle, the unique-parity orbitals
h11=2 and i13=2 should play a similar role.
The question examined here is whether there is a

connection between the parabolic mass dependence of
the isomer shifts and the linear increase [23] of the
11=2− quadrupole moments in 111–129Cd. There is a natural

link between charge radii and quadrupole moments, since
both depend on the nuclear shape and, more specifically, on
the deformation parameter β of the charge distribution, in
the case of an ellipsoidal nucleus. Below, we propose an
interpretation that rests on a number of basic concepts. The
mean square charge radius may be decomposed into a
spherical and a deformed component [3]. In the case of
isomer shifts, i.e., states in the same nucleus, it is
approximately true that the spherical component will cancel
in the differential mean square charge radii, and therefore,
the following relation will hold:

δhr2ig;m ¼ 5

4π
hr20iðβ2m − β2gÞ: ð2Þ

Here, hr20i is the mean square charge radius of the nucleus
assuming a spherical distribution. A quick analysis of the
above equation implies that the parabolic trend in Fig. 2
may be simply a result of a linearly increasing deformation
parameter of the isomeric state while the ground-state
deformation is constant or relatively small. The above is
a compelling argument to make a connection with the
quadrupole moments of the 11=2− states which have been
found to obey the simple relation [23]

Q ¼ 120 − A
9

Qsp
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2Q0

þ Qcore
|ffl{zffl}

2Q00

: ð3Þ

The above single-particle and core parameters take the
values Qsp ¼ −667ð31Þ mb and Qcore ¼ −85ð8Þ mb, and
A is the atomic mass number. It was concluded, in the
original work, that Qsp is about a factor of 2 larger than the
expected contribution from a single neutron on the h11=2
orbital, suggesting a sizable polarization of the proton
distribution. In other words, the polarized, or deformed,
proton core must be responsible for half of each measured
quadrupole moment. These findings have been later sup-
ported by a dedicated theoretical study [34]. Thus, Eq. (3)
is, in effect, a definition of two quantities: Q0, representing
the quadrupole-moment contribution from polarization of
the proton core by the addition of h11=2 neutrons, and Q00,
representing a constant deformation of the ground state
regardless of any h11=2 occupation.
One of the basic equations resulting from the collective

model of the nucleus [35] is the connection between the
observable and the intrinsic quadrupole moment:
Q ¼ hIK20jIKihII20jIIiQ0, where K is the projection

of the nuclear spin ~I onto the symmetry axis. With the
standard assumption of K ¼ I, and by expressing the
intrinsic quadrupole moment as a function of the deforma-
tion, one can formally write

Q ¼ 3
ffiffiffiffiffiffi

5π
p hr20iZβ

Ið2I − 1Þ
ðI þ 1Þð2I þ 3Þ : ð4Þ

FIG. 2. Mean square charge-radii differences between isomers
(m) and ground states (g) in 111–129Cd compared with calculations
discussed in the text. The data correspond to the ionic transition
except for 117Cdwhosevalue is taken from the atomic one. In all but
one case, the statistical errors are smaller than the dots. The shaded
bands represent the systematic uncertainty.
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An inclusion of higher powers of β is not necessary because
the deformations are relatively small. Indeed, with the aid of
Eq. (4) and by approximating the mean square charge radius
with a constant value equal to the one of 116Cd [31], one
arrives at the deformationparameters plottedwith the squares
in Fig. 3. For that purpose, the quadrupole moment is
substituted byQ0ðAÞ fromEq. (3), and therefore, theobtained
deformation parameters correspond to the isomer. Evidently,
the parabola in Fig. 2 crosses the zero line. This is a solid
evidence that a moderate constant deformation is retained by
the cadmium isotopes in their ground states. Clearly, the spin
change between 119Cd and 121Cd does not produce any
significant effect. We estimate the common deformation of
the 1=2þ and the 3=2þ ground states, on the basis ofQ00, to be
−0.03. Finally, the obtained βg and βm are substituted in
Eq. (2) to produce the modeled differential square radii
plotted in Fig. 2. The agreement with experiment is remark-
able, which in turn strongly supports the formalism and the
assumptions along theway.Moreover, this is a manifestation
of one of the long-standing concepts in nuclear physics, the
deformed nucleus. Yet, one needs to point out that the
cadmiumspecies arevery close to sphericalwithdeformation
parameters never exceeding �0.07 along the discussed
range. It is, perhaps, in this regime that one truly observes
“simple structure in complex nuclei” [36].
Having clearly established its relevance, one still needs

to examine any apparent difficulties with the proposed
picture of weakly deformed nuclei. In our basic model, we
postulate a constant ground-state charge deformation. On
the other hand, the measured 3=2þ quadrupole moments in
121–129Cd have been found to spread over a wide range of
500 mb [23]. Arguably, these quadrupole moments are,
therefore, of noncollective origin. Neglecting the second

term in Eq. (3) for the calculation of the isomer’s defor-
mation is somewhat more difficult to justify. In this, we are
mostly guided by the experimental data which clearly show
a minimum in the differential mean square charge radii at
A ¼ 120 (Fig. 2). Should the offset in Eq. (3) be taken into
account, the modeled parabola will exhibit a minimum at a
higher mass number resulting in large discrepancies with
the experiment especially at the wings of the parabola. As a
matter of fact, the inconsistency does not lie with the isomer
shifts but with the quadrupole moments. Since the h11=2
shell is being filled between 111Cd and 129Cd, the minimum
in quadrupole deformation should, indeed, be at A ¼ 120,
as argued in Ref. [23]. Instead, a zero quadrupole moment
is measured at A ¼ 121. So far, the origin of this discrep-
ancy of one mass unit has not been fully understood.
Further studies should address the theoretical grounds for
our hypotheses and this issue in particular.
The quadrupole deformations of theprotondistribution for

the 11=2− states obtained with the covariant density func-
tional theory (CDFT) [37,38] are shown in Fig. 3 for
comparison. The point-coupling functional PC-PK1 [39]
is used for the Lagrangian, and the pairing correlations are
taken into account by the Bardeen-Cooper-Schrieffer (BCS)
methodwith a zero-range force. Sincewe are focusing on the
11=2− states of the odd-A nuclei, the last unpaired neutron
will block its occupied level in the BCS calculations; i.e., the
Pauli principle excludes this level from the scattering process
of nucleon pairs by the pairing correlations. In practical
calculations, the single-particle orbital h11=2 with the third
projection of the total angular momentum jz ¼ 11=2 is
always blocked in order to obtain the nuclear states with
K ¼ 11=2. In fact, in most cases, suchK ¼ I states are more
favorable in energy than other K states.
It has been found in the previous work [34] that the

experimental quadrupole moments are well reproduced by
the same calculation. In Fig. 3, we present the corresponding
quadrupole deformationvalues for the proton distribution. In
general, it supports the linear behavior of the deformation
obtained with the basic model. Note that, here, the CDFT
deformations are the average deformation of the intrinsic
state associated with the collective part of the quadrupole
moment, while other effects from the beyond mean field
level, such as the configurationmixing, are not included. This
may lead to the differences between the basic model and
CDFT results. In fact, as in Ref. [34], the contribution from
the noncollective parts of the quadrupole moments are
roughly 150 mb. If this amount is accounted for in the
CDFT calculation, the deformation parameters would essen-
tially align, as shown with the dashed line in Fig. 3.
In summary, isomer shifts in 111–129Cd have been found

to follow a distinct parabolic mass dependence. This
observation is, so far, unique to the cadmium chain,
although it may be relevant to other nuclear species under
the influence of unique-parity orbitals, namely h11=2 or
i13=2. The corresponding regularity in the radii changes is

FIG. 3. Quadrupole deformation of the proton distribution in
the 11=2− states of 111–129Cd from covariant density functional
theory (CDFT) compared with the basic model discussed in the
text. For the sake of clarity, in the visualized examples, the
deformation parameters are exaggerated with respect to the model
by a factor of 3.
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understood in conjunction with previously reported electric
quadrupole moments within a common picture assuming
axial deformation. This sets a constraint on the ground
states which are found to have an identical nearly spherical
shape along the chain regardless of the change in configu-
ration from 1=2þ to 3=2þ at 121Cd. Self-consistent calcu-
lations with the covariant density functional theory
corroborate our conclusions. Nonetheless, our approach
does not address the magnetic properties of the above
nuclides [40,41], or their 3=2þ quadrupole moments in
particular. Further theoretical work, notably by using the
spherical shell model in a large model space, would be
highly beneficial for understanding all aspects of the
nuclear simplicity in this region of the nuclear chart.
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