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The soft photon theorem, in its standard form, requires corrections when the asymptotic particle states
carry magnetic charges. These corrections are deduced using electromagnetic duality and the resulting soft
formula conjectured to be exact for all Abelian gauge theories. Recent work has shown that the standard
soft theorem implies an infinity of conserved electric charges. The associated symmetries are identified as
“large” electric gauge transformations. Here the magnetic corrections to the soft theorem are shown to
imply a second infinity of conserved magnetic charges. The associated symmetries are identified as large
magnetic gauge transformations. The large magnetic symmetries are naturally subsumed in a complex-
ification of the electric ones.
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Introduction.—The soft photon theorem [1–5] relates the
leading infrared behavior of scattering amplitudes with and
without single soft photon emission

hpmþ1;…jaαðqÞSjp1;…i¼S0hpmþ1;…jSjp1;…iþOðq0Þ;
ð1Þ

where pk is the momentum of the kth particle and aα
annihilates the momentum q → 0 photon. The soft factor S0
[Eq. (2) below] has a pole in q. The formula (1) is exact as
long as there are no magnetic monopoles among the
asymptotic particles. In this Letter we argue that the general
form of the relation (1) remains valid in the presence of
monopoles, but the formula for S0 is corrected.
Electromagnetic duality transformations are used to deduce
the corrected form of S0 [Eq. (6) below)] which is con-
jectured to be exact [6]. The corrected soft formula should
play an important role in understanding the infrared structure
of Abelian gauge theories with magnetic monopoles.
Recently, it has been understood [7–10] that, in the

absence of magnetic monopoles, the usual soft photon
theorem is the Ward identity of an infinite-dimensional
asymptotic symmetry group comprised of certain “large”
Abelian gauge transformations that do not die off at infinity.
The associated infinity of conservation laws equates arbitrary
moments of the electric field measured at the past of future
null infinity with the antipodal moments measured at the
future of past null infinity. Here we spell out the analogous
magnetic story. Abelian gauge theories also have magnetic
gauge symmetries which shift the dual magnetic potentials.
When magnetic charges are present, there is an infinite-
dimensional large subgroup that acts nontrivially on the S
matrix. The infinity of associated conserved charges are
comprised of moments of the magnetic field [11]. The large
magnetic gauge symmetries are naturally contained in a
complexification of the large electric gauge symmetries [12].
The corrected soft photon theorem is then the Ward identity

of the complexified large gauge transformations. All of these
symmetries are spontaneously broken and the soft photons
are the Goldstone bosons. The argument can also be run
backwards: the corrected soft photon theorem implies the
existence of an infinite number of conserved electric and
magnetic charges, together with the associated symmetries.
This Letter is organized as follows. In Sec. 2 we derive

the magnetically corrected soft photon theorem. Section 3
derives the associated asymptotic symmetries and conserved
charges. Some conventions are given in the appendix.
Magnetically modified soft theorem.—The leading soft

factor for an ðm → nþ 1 −mÞ-particle scattering process
defined in Eq. (1) is [1–5]

S0ðq; εα;pk; ekÞ ¼
Xn

k¼mþ1

ekpk · εα
pk · q

−
Xm
k¼1

ekpk · εα
pk · q

: ð2Þ

Here, ek ¼ ð1=eÞ R �F is the electric charge of the kth
particle. εα is the polarization vector of the soft photon
whose annihilation operator aα is defined in the Appendix.
We wish to find the corrections to this formula required in
the presence of asymptotic particles carrying magnetic
charge gk ¼ ð1=eÞ R F. The form of the monopole-induced
corrections are easily deduced via an electromagnetic duality
transformation. This is simply a convenient field redefinition
and we are not assuming any symmetry of the theory. Dual
variables [13], denoted by a tilde, are defined by

~F ¼ −
4π

e2
� F;

~e ¼ 4π

e
;

~ek ¼
1

~e

Z
� ~F ¼ gk;

~gk ¼
1

~e

Z
~F ¼ −ek: ð3Þ
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The soft photon field strength is proportional to

F ¼ dA; A ¼ eεαeiq·x: ð4Þ
A dual soft photon vector potential and polarization is
defined by

~F ¼ d ~A ¼ −
4π

e2
� dA; ~A ¼ ~e~εαeiq·x: ð5Þ

This formula defines ~εα up to an irrelevant shift by q. ~εα is
essentially the Hodge dual of εα in the spatial plane trans-
verse to the spatial direction of photon propagation. The
coupling of a magnetic monopole to a photon, at soft
wavelengths much larger than the monopole size, can
now be obtained by the replacement A → ~A, εα → ~εα and
ek → ~ek ¼ gk. It follows that monopoles preserve a soft
relation of the form (1) while correcting the leading soft
factor to [14]

S0ðq; εα;pk; gk; ekÞ ¼
Xn

k¼mþ1

pk · ðekεα þ gk ~εαÞ
pk · q

−
Xm
k¼1

pk · ðekεα þ gk ~εαÞ
pk · q

: ð6Þ

Electric and magnetic charge conservation imply that S0 is
separately invariant under electric and magnetic gauge
transformations εα → εα þ q and ~εα → ~εα þ q.
We conjecture the formula (6) is exact for all Abelian

gauge theories.
Symmetries of the S matrix.—In this section we describe

the nontrivially acting electric and magnetic symmetries of
the S matrix and derive the associated Ward identities. For
simplicity, we take all charged particles to be massive. Our
analysis follows closely Ref. [7], to which we refer the
interested reader for further details.
Preliminaries: The Minkowski metric in retarded coor-

dinates reads

ds2¼−dt2þðdxiÞ2 ¼−du2−2dudrþ2r2γzz̄dzdz̄; ð7Þ

where u is retarded time and γzz̄ is the round metric on the
unit radius S2 with covariant derivative Dz. These are
related to standard Cartesian coordinates by

r2 ¼ xixi; u ¼ t − r; xi ¼ rx̂iðz; z̄Þ: ð8Þ
Advanced coordinates ðv; r; z; z̄Þ near past null infinity
ðI−Þ are
ds2 ¼ −dv2 þ 2dvdrþ 2r2γzz̄dzdz̄; r2 ¼ xixi;

v ¼ tþ r; xi ¼ −rx̂iðz; z̄Þ: ð9Þ
Iþ (I−) is the null hypersurface r ¼ ∞ in retarded
(advanced) coordinates. Because of the last minus sign
in (9) the angular coordinates on Iþ are antipodally related
to those on I− so that a light ray passing through the

interior of Minkowski space reaches the same value of z; z̄
at both Iþ and I−. We denote the future (past) boundary of
Iþ by Iþ

þ (Iþ
− ), and the future (past) boundary of I− by

I−þ (I−
−).

Near Iþ, we assume the asymptotic expansion

Au ¼
X∞
n¼1

AðnÞ
u ðu; z; z̄Þ

rn
;

Ar ¼
X∞
n¼2

AðnÞ
r ðu; z; z̄Þ

rn
;

Az ¼
X∞
n¼0

AðnÞ
z ðu; z; z̄Þ

rn
ð10Þ

along with similar expansions near I− and for ~Aμ. Near
spatial infinity the field strengths are taken to obey the
usual PT- and Lorentz-invariant antipodal continuity
condition

Fð2Þ
ru ðz; z̄ÞjIþ

−
¼ Fð2Þ

rv ðz; z̄ÞjI−
þ
; ð11Þ

Fð0Þ
zz̄ ðz; z̄ÞjIþ

−
¼ −Fð0Þ

zz̄ ðz; z̄ÞjI−
þ
: ð12Þ

The minus sign (12) arises because our advanced
and retarded coordinate systems differ by a parity
transformation.
Electric charges and symmetries: Abelian theories have

an infinite number of local electric gauge symmetries under
which

δAμðxÞ ¼ ∂μεðxÞ; δΨkðxÞ ¼ iε
ek
e
ΨkðxÞ; ð13Þ

where Ψk is any field or wave function of charge ek. One
may attempt to define associated charges as various two-
surface integrals of the field strength weighted by the gauge
parameters. Many such charges are either trivial or not
conserved. However, an infinite number of nontrivial
outgoing (incoming) charges on Iþ (I−) can be associated
with large gauge transformations on Iþ (I−) that approach
the time-independent function εðz; z̄Þ on I [16]. Explicitly,
these are

Qþ
ε ¼ 1

e2

Z
Iþ
−

d2zγzz̄εF
ð2Þ
ru ;

Q−
ε ¼ 1

e2

Z
I−
þ
d2zγzz̄εF

ð2Þ
rv ; ð14Þ

where εðz; z̄Þ is any function on S2. It follows immediately
from (11) that these charges are conserved:

Qþ
ε ¼ Q−

ε : ð15Þ
Under the associated symmetry the gauge field on Iþ
transforms as
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δεA
ð0Þ
z ðu; z; z̄Þ ¼ ∂zεðz; z̄Þ: ð16Þ

It follows that the large gauge symmetry is spontaneously

broken and the zero modes of Að0Þ
z —the soft photons—are

the goldstone bosons.
It is useful to write the charges as integrals over I�.

Defining the outgoing, positive-helicity soft photon operator

Fþ
z ≡

Z
duFð0Þ

uz ; ð17Þ

integrating by parts and using the Iþ constraint equation

∂uF
ð2Þ
ru þDzFð0Þ

uz þDz̄Fð0Þ
uz̄ ¼ 0 ð18Þ

one finds

Qþ
ε ¼ 1

e2

Z
S2
d2zεð∂ z̄Fþ

z þ ∂zF
þ
z̄ Þ þ

1

e2

Z
Iþ
þ
d2zγzz̄εF

ð2Þ
ru

≡Qþ
S þQþ

H: ð19Þ
The first piece of the charge is written in terms of the soft
photon operator andwill be referred to as the soft chargeQþ

S .
The second piece is proportional to the electric fields
produced by the asymptotic outgoing hard particles and
will be referred to as the hard charge Qþ

H.
Similar observations apply to I−. The charge is given by

Q−
ε ¼ 1

e2

Z
S2
d2zεð∂ z̄F−

z þ ∂zF−
z̄ Þ þ

1

e2

Z
I−
−

d2zγzz̄εF
ð2Þ
rv

≡Q−
S þQ−

H; ð20Þ
where F−

z ≡ R
dvFð0Þ

vz creates and annihilates incoming soft
photons.
The conservation law (15) is equivalent to the S-matrix

Ward identity:

houtjðQþ
ε S − SQ−

ε Þjini ¼ 0: ð21Þ

In order to facilitate later comparison with the soft theorem,
we rewrite this in the form

houtjðQþ
S S − SQ−

S Þjini ¼ −houtjðQþ
HS − SQ−

HÞjini: ð22Þ

In Refs. [7,8] it was shown that, in the absence of
magnetic charges, Qþ

ε (Q−
ε ) generates large gauge sym-

metries on Iþ (I−) via commutators.Qþ
S , which is linear in

the soft photon operator, generates the inhomogenous
transformation ½Qþ

s ; A
ð0Þ
z � ¼ i∂zε in (16). Qþ

H generates
the large gauge action on the hard particles, whose charge
densities are (in the massive case) generally distributed over
the asymptotic S2. However, the analyses in Refs. [7,8]
assumed the absence of magnetic fields at I�

� and do not
directly apply to the present context. Moreover, we expect
the value of the θ angle to affect zero mode commutators

and be important for such an analysis. We expect it remains
true that the charges Q�

ε generate the large electric
symmetries, but we will not show it here.
Magnetic charges and symmetries: Abelian theories also

have an infinite number of local magnetic gauge sym-
metries under which

~δε ~AμðxÞ ¼ ∂μεðxÞ; ~δεΨkðxÞ ¼ iε
egk
4π

ΨkðxÞ; ð23Þ

where Ψk is any field or wave function of magnetic charge
gk. We consider large magnetic gauge transformations,
under which the dual gauge field on Iþ transforms as

~δε ~A
ð0Þ
z ðu; z; z̄Þ ¼ ∂zεðz; z̄Þ: ð24Þ

Conclusions parallel to those of the previous subsection
apply to the magnetic case. This is obvious by working in
the terms of the dual variables, which simply amounts to
putting a tilde on every variable of the previous subsection.
It is also useful to describe the magnetic charges in the
original variables without using duality as follows.
The infinity of outgoing and incoming magnetic charges

associated with (24) are

~Qþ
ε ¼ i

4π

Z
Iþ
−

d2zεFð0Þ
zz̄ ;

~Q−
ε ¼ −

i
4π

Z
I−
þ
d2zεFð0Þ

zz̄ ; ð25Þ

where εðz; z̄Þ is any function on S2. It follows immediately
from (12) that these charges are conserved:

~Qþ
ε ¼ ~Q−

ε : ð26Þ
Integrating by parts and using the Bianchi identity (instead
of the constraint equation) one finds

~Qþ
ε ¼ i

4π

Z
S2
d2zεð∂ z̄Fþ

z − ∂zF
þ
z̄ Þ þ

i
4π

Z
Iþ
þ
d2zεFð0Þ

zz̄

≡ ~Qþ
S þ ~Qþ

H;

~Q−
ε ¼ i

4π

Z
S2
d2zεð∂ z̄F−

z − ∂zF−
z̄ Þ −

i
4π

Z
I−
−

d2zεFð0Þ
zz̄

≡ ~Q−
S þ ~Q−

H: ð27Þ
The first term creates and annihilates soft photons, while
the second acts on the hard asymptotic magnetically
charged particles, much as in the electric case. The
magnetic Ward identity is

houtjð ~Qþ
S S − S ~Q−

S Þjini ¼ −houtjð ~Qþ
HS − S ~Q−

HÞjini: ð28Þ
Electromagnetic charges and symmetries: It turns out

that the electric and magnetic charges and symmetries
combine simply into a single complexifed charge and
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symmetry. To see this, consider the action of duality on the
fields at Iþ:

~Fð0Þ
zz̄ ¼ 4πi

e2
γzz̄F

ð2Þ
ru ;

~Fð2Þ
ru ¼ 4πi

e2
γzz̄Fð0Þ

zz̄ ;

~Fð0Þ
uz ¼ 4πi

e2
Fð0Þ
uz ;

~Fð0Þ
uz̄ ¼ −

4πi
e2

Fð0Þ
uz̄ ; ð29Þ

and I−:

~Fð0Þ
zz̄ ¼ −

4πi
e2

γzz̄F
ð2Þ
rv ;

~Fð2Þ
rv ¼ −

4πi
e2

γzz̄Fð0Þ
zz̄ ;

~Fð0Þ
vz ¼ 4πi

e2
Fð0Þ
vz ;

~Fð0Þ
vz̄ ¼ −

4πi
e2

Fð0Þ
vz̄ : ð30Þ

It is convenient to define Q�
ε ≡ eQ�

ε þ ð4πi=eÞ ~Q�
ε ,

which may be expressed

Qþ
ε ¼ 2

e

Z
S2
d2zε∂zF

þ
z̄ þ 1

e

Z
Iþ
þ
d2zεðγzz̄Fð2Þ

ru − Fð0Þ
zz̄ Þ

≡Qþ
S þQþ

H

Q−
ε ¼ 2

e

Z
S2
d2zε∂zF−

z̄ þ 1

e

Z
I−
−

d2zεðγzz̄Fð2Þ
rv þ Fð0Þ

zz̄ Þ

≡Q−
S þQ−

H: ð31Þ
These complexified charges are natural because they trans-
form simply under duality

~Q�
ε ¼ −iQ�

ε : ð32Þ
The complexified Ward identity

houtjðQþ
S S − SQ−

S Þjini ¼ −houtjðQþ
HS − SQ−

HÞjini ð33Þ
then implies both (22) and (28).
The structure of (31) suggests that the magnetic sym-

metries are contained in a complexification of the electric
ones. This can be made more precise. It follows from the

expansion (10) thatFð0Þ
uz ¼ ∂uA

ð0Þ
z ¼ ðe2=4πiÞ∂u

~Að0Þ
z , so that

the field strengths determine the asymptotic electric and
magnetic vector potentials up to a ðz; z̄Þ-dependent integra-
tion constant. It is natural to choose this constant so that

~Að0Þ
z ¼ 4πi

e2
Að0Þ
z ; ~Að0Þ

z̄ ¼ −
4πi
e2

Að0Þ
z̄ : ð34Þ

In this framework electromagnetic duality acts locally on the
vector potential at I as a ðπ=2Þ rotation and a rescaling. (34)

requires Að0Þ
z must transform under magnetic gauge trans-

formations as

~δεA
ð0Þ
z ¼ −

ie2

4π
∂zε; ~δεA

ð0Þ
z̄ ¼ ie2

4π
∂ z̄ε: ð35Þ

Qþ
ε is associated with a real electric transformation propor-

tional to eε and an imaginary magnetic one proportional to
ð4πi=eÞε. The associated transformation of the vector
potential is

�
eδε þ

4πi
e

~δε

�
Að0Þ
z ¼ 2e∂zε;

�
eδε þ

4πi
e

~δε

�
Að0Þ
z̄ ¼ 0: ð36Þ

The complexified transformation acts only on the holomor-

phic vector potential Að0Þ
z . This natural complexification of

the large gauge group was encountered previously [9,10] in
recasting it as a U(1) Kac-Moody symmetry acting on the
conformal S2 at I , and is closely related to the complex-
ification used to set Az̄ ¼ 0 on the boundary when recasting
3D Chern-Simons theory as a WZW model [17,18].
Soft theorem → Ward identity: In this section we close

the loop by showing that the magnetically modified soft
photon theorem (1) implies the general Ward identity (33).
The outgoing soft photon theorem can be written

lim
ω→0

ωhpmþ1;…jaαðqÞSjp1;…i
¼ ωS0hpmþ1;…jSjp1;…i; ð37Þ

with S0 given in (6) and conventions in the appendix. We
parametrize the photon momentum as

qμ ¼ ω(1; x̂ðz; z̄Þ)≡ ωq̂μðz; z̄Þ; ð38Þ

with x̂2 ¼ 1 and z a complex coordinate on S2 as in (8). The
left-hand side of (37) can be written in terms of the zero
mode (17),

Fþ
z̄ ðz; z̄Þ ¼

Z
duFð0Þ

uz̄

≡ −
e
8π

∂ z̄x̂i lim
ω→0

X
α

½ωε�αi aαðωx̂Þ þ ωεαi a
†
αðωx̂Þ�;

ð39Þ

by taking a weighted sum over polarizations. Using the
identity [7]

∂ z̄x̂iðz; z̄Þ
X
α

ε�αi
pk · εα

pk · q̂ðz; z̄Þ
¼ ∂ z̄ logðpk · q̂Þ; ð40Þ

the soft theorem becomes
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hpmþ1;…jFþ
z̄ Sjp1;…i¼−

e
8π

� Xn
k¼mþ1

ðekþigkÞ∂ z̄ logðpk · q̂Þ

−
Xm
k¼1

ðekþigkÞ∂ z̄ logðpk · q̂Þ
�
hpmþ1;…jSjp1;…i: ð41Þ

For incoming soft photons, one has

lim
ω→0

ωhpmþ1;…jSa†αðqÞjp1;…i¼−ωS�0hpmþ1;…jSjp1;…i;
ð42Þ

where S0 is not real in a complex basis of polarizations. A
nearly identical calculation then yields

hpmþ1;…jSF−
z̄ jp1;…i¼ e

8π

� Xn
k¼mþ1

ðekþigkÞ∂ z̄ logðpk · q̂0Þ

−
Xm
k¼1

ðekþigkÞ∂ z̄ logðpk · q̂0Þ
�
hpmþ1;…jSjp1;…i; ð43Þ

where q̂0 ¼ (1;−x̂iðz; z̄Þ). Taking the divergence of
(41) and (43), multiplying by ε and integrating over
the sphere, we find [19]

hpmþ1;…j
Z
S2
d2zε∂zF

þ
z̄ Sjp1;…i

¼ 1

4

Z
S2
d2zεð½γzz̄Fð2Þ

rv þ Fð0Þ
zz̄ �I−

þ

− ½γzz̄Fð2Þ
ru − Fð0Þ

zz̄ �Iþ
þ
Þhpmþ1;…jSjp1;…i; ð44Þ

hpmþ1;…jS
Z
S2
d2zε∂zF−

z̄ jp1;…i

¼ 1

4

Z
S2
d2zεð½γzz̄Fð2Þ

ru − Fð0Þ
zz̄ �Iþ

−

− ½γzz̄Fð2Þ
rv þ Fð0Þ

zz̄ �I−
−
Þhpmþ1;…jSjp1;…i: ð45Þ

Taking the difference of (44) and (45) and using the
continuity conditions (11)–(12), we reproduce (33)

hpmþ1;…jQþ
S S − SQ−

S jp1;…i

¼ −
1

e

Z
S2
d2zεð½γzz̄Fð2Þ

ru − Fð0Þ
zz̄ �Iþ

þ

− ½γzz̄Fð2Þ
rv þ Fð0Þ

zz̄ �I−
−
Þhpmþ1;…jSjp1;…i ð46Þ

¼ −hpmþ1;…jQþ
HS − SQ−

Hjp1;…i: ð47Þ

In conclusion, the magnetically modified soft photon
theorem is the Ward identity of complexified large electro-
magnetic gauge transformations.
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APPENDIX: MODE EXPANSIONS

We normalize the gauge field so that the action is S ¼
−ð1=4e2Þ R F2 with e the gauge coupling. The standard
mode expansion for the vector field is then

Aμðu; r; z; z̄Þ ¼ e
X
α

Z
d3q
ð2πÞ3

1

2ωq
½ε�αμ ð~qÞaαð~qÞeiq·x

þ εαμð~qÞa†αð~qÞe−iq·x�; ðA1Þ

with

½aαð~qÞ; a†βð~q0Þ� ¼ δαβ16π
3ωδ3ð~q − ~q0Þ: ðA2Þ

The large-r saddle point approximation gives

Að0Þ
z ðu; z; z̄Þ ¼−

ie
2ð2πÞ2 ∂zx̂i

X
α

Z
∞

0

dωq½ε�αi aαðωqx̂Þe−iωqu

− εαi aαðωqx̂Þ†eiωqu�: ðA3Þ
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