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We use the scalar model with quartic interaction to illustrate how a nonperturbative variational technique
combined with renormalization group (RG) properties efficiently resums perturbative expansions in
thermal field theories. The resulting convergence and scale dependence of optimized thermodynamical
quantities, here illustrated up to two-loop order, are drastically improved as compared to standard
perturbative expansions, as well as to other related methods such as the screened perturbation or
(resummed) hard-thermal-loop perturbation, that miss RG invariance (as we explain). Being very general
and easy to implement, our method is a potential analytical alternative to dealing with the phase transitions
of field theories such as thermal QCD.
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At sufficiently high temperature or density, one could
naively hope that the asymptotic freedom property of
quantum chromodynamics (QCD) would give a reliable
perturbation theory (PT) handle on the quark-gluon plasma
physics. However, it is well known that severe infrared
divergences unavoidably spoil a standard PT approach in
thermal QCD, and generically also for other thermal field
theories, such that PT gives poorly convergent and,
furthermore, badly scale-dependent results at successive
orders (see, e.g., Ref. [1] for reviews). Nowadays, the
development of powerful computers and numerical tech-
niques offers the possibility of solving these nonperturba-
tive problems in silico, employing lattice field theory
(LFT). Thus far, LFT has been very successful in the
description of the QCD phase transitions at finite temper-
atures and near vanishing baryonic densities, with results
[2] which can be directly used for interpreting the exper-
imental output from heavy ion experiments envisaged to
scan over this particular region of the phase diagram.
However, the well-known numerical sign problem [3],
which plagues this method when one considers the pos-
sibility of a particle-antiparticle asymmetry (signaled by a
finite chemical potential), prevents LFT from being suc-
cessfully used to describe compressed baryonic matter.
Therefore, at the present stage, one cannot rely on LFT to
describe the physics of compact stellar objects or to explore
the complete QCD phase diagram. In parallel, over the last
decades many efforts have been devoted to trying to
understand more analytically the bad convergence generi-
cally observed for thermal PT, even for moderate coupling
values. Typically, the dynamical generation of a thermal
screening mass mD ∼

ffiffiffi
λ

p
T influences the relevant expan-

sion of thermodynamical quantities, such as the pressure,
involving powers of

ffiffiffi
λ

p
rather than only λ. Accordingly, the

predictions are, a priori, less convergent than for the
T ¼ 0 case. A plethora of nonperturbative approximations

attempting to resum thermal perturbative expansions have
been developed and refined over the years [1,4–6]. The so-
called optimized perturbation theory (OPT) is a variational
approach in which a related solvable case is rewritten in
terms of an unphysical parameter, allowing for optimized
nonperturbative results. In recent decades this strategy has
been recycled, appearing under different names [7–9]. At
each successive order of such a modified perturbative
expansion, the arbitrary variational mass is fixed by a
stationary condition. This strategy has already been used
in a variety of different physical situations, including,
e.g., the determination of the critical temperature for
homogeneous Bose gases [10,11], the phase diagram of
magnetized planar fermionic systems [12,13], and the
evaluation of quark susceptibilities within effective QCD
inspired models [14]. The development of a similar
method—known as screened perturbation theory (SPT)
[15] or its version tailored to treat thermal gauge theories
[16], hard-thermal-loop (resummed) perturbation theory
(HTLpt) [17]—has been pushed to three-loop perturbative
order [18–21]. Given the inherent technical difficulties of
the (three-loop) evaluation of the QCD pressure for the case
of hot and dense quark matter, the recent results in Ref. [21]
represent an impressive achievement. Moreover, their
agreement with LFT simulations is quite remarkable, down
to about twice the critical temperature, for the scale choice
μ ¼ 2πT in the modified minimal subtraction (MS)
renormalization scheme. However, the SPT or HTLpt
presents several shortcomings overshadowing its potential
as a reliable nonperturbative alternative to LFT. Perhaps the
most embarrassing issue is the strongly enhanced scale
dependence displayed at increasing two- and three-loop
orders, at odds with intuitive expectations: at three-loop
order, even moderate scale variations dramatically affect
thermodynamical quantities by relative Oð1Þ variations
[18,20,21]. Another issue with the standard variational

PRL 116, 031601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

22 JANUARY 2016

0031-9007=16=116(3)=031601(6) 031601-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.031601
http://dx.doi.org/10.1103/PhysRevLett.116.031601
http://dx.doi.org/10.1103/PhysRevLett.116.031601
http://dx.doi.org/10.1103/PhysRevLett.116.031601


methods such as OPT, SPT, and HTLpt is that beyond the
lowest orders, optimization gives more and more solutions,
with unphysical complex-valued ones, often leading to the
use of alternative prescriptions such as replacing the
variational mass with a purely perturbative mass [20],
therefore losing valuable nonperturbative information.
Recently, the OPT method at vanishing temperatures and

densities has been consistently combined with renormaliza-
tion group (RG) properties [22–24]. The resulting RGOPT
gives stable and precise results for the Gross-Neveu mass
gap [22], and new independent determinations [24] of the
basic QCD scale (ΛMS) and the related coupling αS, or the
quark condensate [25]. Moreover, unique and real optimi-
zation solutions can often be obtained [24] by matching
those solutions to the RG behavior for small couplings, and
by using appropriate renormalization scheme changes.
Here, we take an important step forward by showing that

the RGOPT is also compatible with the introduction of
control parameters such as the temperature. To illustrate
how to implement the procedure, we have chosen a simple,
yet versatile, model so that one can easily grasp the basic
ideas and follow the main steps when performing a
particular application. More detailed results and formulas
are given elsewhere [26]. Aside from purely calculation
difficulties, the method described in this Letter can be
directly extended to a large class of models.
We thus start by considering the Lagrangian for one

neutral scalar field with a quartic interaction,

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

λ

4!
ϕ4; ð1Þ

where we have introduced a generic mass term m. The
textbook result for the two-loop free energy (equivalently,
minus the pressure) is [18,27]

F 0 ¼
T
2

XZ
p

lnðω2
n þ ω2

pÞ þ
λT2

8

�XZ
p

1

ω2
n þ ω2

p

�
2

þ F ct
0 ;

ð2Þ
where in the imaginary time formalism ωn ¼ 2πTn
ðn ¼ 0; 1; � � �Þ represents the bosonic Matsubara frequen-
cies and ω2

p ¼ p2 þm2 is the dispersion relation. The sum
integral in Eq. (2), as usual, represents the sum over
Matsubara frequencies and the remaining integration with
measure d3−2ϵp=ð2πÞ3−2ϵ, using dimensional regularization
to perform the integration. The one-loop part of Eq. (2) is

ð4πÞ2F 0 ¼ −
m4

8

�
2

ϵ
þ 3þ 2 ln

�
μ2

m2

��
þ F 0ðTÞ þ F ct

0 ;

ð3Þ
where μ is the arbitrary renormalization scale in the MS
renormalization scheme, and F ct

0 ¼ m4=ð4ϵÞ represents the
vacuum energy counterterm [18]. We can already address a

crucial point by considering the one-loop part of free
energy (3). It is a trivial matter to check that the renor-
malized result spoils perturbative RG invariance. Acting on
Eq. (3) with the standard RG operator,

μ
d
dμ

¼ μ
∂
∂μþ βðλÞ ∂

∂λþ γmðλÞm
∂
∂m ; ð4Þ

and noting that the thermal contribution F 0ðTÞ is scale
independent, yields a remnant contribution: −m4=2, not
compensated for by lowest order terms from βðλÞ or γmðλÞ
in Eq. (4), those being at least of next order OðλÞ. This is a
manifestation of the fact that perturbative RG invariance
generally occurs from cancellations between terms from the
RG equation at order λk and the explicit μ dependence at the
next order λkþ1 [our normalization is βðλÞ≡ dλ=d ln μ ¼
b0λ2 þ b1λ3 þ � � � for the β function and γmðλÞ≡
d lnm=d ln μ ¼ γ0λþ γ1λ

2 þ � � � for the anomalous mass
dimension, with [28] ð4πÞ2b0 ¼ 3, ð4πÞ2γ0 ¼ 1=2,
ð4πÞ4b1 ¼ −17=3, ð4πÞ4γ1 ¼ −5=12]. Nevertheless, per-
turbative RG invariance can easily be restored by adding a
finite vacuum energy term, E0, to the action without
changing the dynamics. Although this term is usually
ignored, minimally set to zero in the (thermal) literature
[17,18,20], we stress that it is instrumental for perturbative
RG invariance to be achieved. Not surprisingly, we claim it
largely explains the degrading scale dependence at higher
orders in other similar resummation methods like SPT and
HTLpt, which ignore those finite vacuum energy terms.
The subtraction in the MS scheme is conveniently written
as [24,25,29]

E0ðλ; mÞ ¼ −ðm4=λÞ
X
k≥0

skλk; ð5Þ

where the coefficients sk are perturbatively determined
order by order from RG invariance. In the normalization of
Eq. (3) we find s0 ¼ ½2ðb0 − 4γ0Þ�−1 ¼ 8π2, so that when
augmented with E0 the renormalized free energy from
Eq. (3) is RG invariant at the one-loop level. This can be
carried out to higher orders to give s1 ¼ −1,
s2 ¼ ð23þ 36ζ½3�Þ=ð480π2Þ, etc. Note that the apparently
singular behavior for λ → 0 in Eq. (5) will actually
disappear from the final optimized free energy. We stress
that the previous construction, being dependent only on the
renormalization procedure, does not depend on temper-
ature-dependent parts: at arbitrary perturbative orders the sk
coefficients can be determined from the T ¼ 0 contribu-
tions only. This is indeed well known, and the non-RG-
invariant remnant part defines the so-called vacuum energy
anomalous dimension, which has been calculated even to
five-loop order for the generalOðNÞ scalar model [30]. Our
independent results for the sk’s are fully consistent with
Ref. [30]. A subtlety is that, according to Eq. (5), sk is
strictly required for RG invariance at order λk but contrib-
utes at order λk−1. So at order λk one may minimally choose
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to include only s0;…; sk, or more completely to include
skþ1 ≠ 0, thus incorporating higher order RG information.
One can now proceed to apply the RGOPT resummation

by first performing on the RG-invariant free energy the
substitution which appropriately modifies its perturbative
expansion:

m2 → m2ð1 − δÞ2a; λ → δλ; ð6Þ
where now m is an arbitrary parameter, and the role of a is
explained below. One then reexpands at successive orders
δk, setting δ → 1 in the final results. This procedure is
consistent with renormalizability [31–33] and gauge invari-
ance [29], whenever the latter is relevant. The arbitrary
mass parameter m is then most conveniently fixed by a
variational optimization prescription [9],

∂F ðkÞ
0

∂m ðm; λ; δ ¼ 1Þjm≡ ~m ≡ 0; ð7Þ

and ~m ≠ 0 determines a nontrivial mass ~mðλÞ with non-
perturbative λ dependence.
In most previous OPT [7] (similarly, SPT [15] and

HTLpt [16]) applications, the linear δ expansion was used,
i.e., assuming a ¼ 1=2 in Eq. (6) mainly for simplicity and
economy of parameters. However, to preserve RG invari-
ance after performing Eq. (6), a is uniquely fixed [24] by
the universal (renormalization scheme independent) first
order RG coefficients, as we show below. Note that, once
combined with Eq. (7), the RG equation (4) takes a reduced
massless form

�
μ
∂
∂μþ βðλÞ ∂

∂λ
�
F ðkÞ

0 ðm; λ; δ ¼ 1Þ ¼ 0; ð8Þ

so Eq. (8) with the OPT equation (7) completely sets
optimized m≡ ~m and g≡ ~g “variational fixed-point”
values. Consider the one-loop equation (3), at T ¼ 0,
augmented by E0 ¼ −ðm4=λÞs0, where, as discussed above,
s0 ¼ 8π2. Performing Eq. (6), expanding to order δ0

consistently, and taking afterwards δ → 1 yields

ð4πÞ2F δ0
0 ¼ m4

�
−
s0
λ
ð1 − 4aÞ −

�
3

8
þ 1

4
ln

μ2

m2

��
: ð9Þ

Then, to satisfy Eq. (8) implies a ¼ γ0=b0 ¼ 1=6. At this
one-loop order, the RG equation (8) gives no further
constraints, but at higher orders it fixes an optimized
coupling, and a ¼ γ0=b0 guarantees that among both the
RG and OPT solutions, at least one (often unique) is
consistent with the T ¼ 0 standard perturbative behavior
[24] for λ → 0, i.e., infrared freedom in the present
case: λðμ ≪ mÞ≃ ½b0 lnðm=μÞ�−1.
Switching on thermal effects, it is convenient to express

our results in terms of the one-loop renormalized self-
energy including all T dependence, ΣR, explicitly [1,18]:

ΣR ¼ γ0λ

�
m2

�
ln
m2

μ2
− 1

�
þ T2J1

�
m
T

��
; ð10Þ

with the thermal integrals (t ¼ p=T and x ¼ m=T)

JnðxÞ ¼
4Γ½1=2�

Γ½5=2 − n�
Z

∞

0

dt
t4−2nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

p 1

e
ffiffiffiffiffiffiffiffiffi
t2þx2

p
− 1

: ð11Þ

Then, noting that Tð∂=∂m2ÞPR lnðω2
n þ ω2

pÞ ¼ 2ΣR=λ, the

exact solution of the one-loop OPT equation (7) takes the
form of a self-consistent “gap” equation,

~m2 ¼ ð4πÞ2b0ΣRð ~m2Þ; ð12Þ
which is exactly scale invariant by construction. To
illustrate this more explicitly, it is convenient to use the
high-T expansion m=T ≡ x ≪ 1 of JnðxÞ, e.g., J0ðxÞ≃
16π4=45− 4π2x2=3þ 8πx3=3þ x4½lnx=ð4πÞþ γE − 3=4�þ
Oðx6Þ. This approximation is actually valid at the 0.1%
level even for x≲ 1, sufficient for our purpose since the
RGOPTone-loop solution ~m=T always lies in this range. In
this case the OPT equation (7) is a simple quadratic
equation for x, with the unique physical (x > 0) solution

~x ¼ ~mð1Þ

T
¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
ð 1
b0λ

þ LTÞ
q

− 1

1
b0λ

þ LT
; ð13Þ

with LT ≡ ln½μeγE=ð4πTÞ�. We stress that the variational
mass (13) is unrelated to the physical screening mass [34].
The corresponding one-loop RGOPT pressure reads
[P0 ¼ ðπ2=90ÞT4 is the ideal gas pressure]

Pð1Þ

P0

¼ 1 −
15

4π2
~x2 þ 15

2π3
~x3 þ 45

16π4

�
1

b0λ
þ LT

�
~x4: ð14Þ

Equations (12)–(14) clearly have a nonperturbative depend-
ence in λ, and they are exactly scale invariant upon using for
λ≡ λðμÞ the “exact” (one-loop) running, 1=λðμ0Þ ¼
1=λðμÞ − b0 ln μ0=μ; then, 1=(b0λðμÞ)þ LT is explicitly
μ independent. Thus, Eqs. (13) and (14) only depend on the
single parameter b0λðμ0Þ, where μ0 is some reference scale,
typically μ0 ¼ 2πT. This is a remarkable result, recalling
that we started from Eq. (3) augmented by −m4ðs0=λÞ
being RG invariant up to the neglected higher order OðλÞ,
but not yet resummed, while Eqs. (13) and (14) are all-
order RG invariant, showing the resummation efficiency
after optimization. Equation (14), perturbatively expanded,
gives for the first few orders Pð1Þ=P0 ≃ 1 − 5α=4þ
5

ffiffiffi
6

p
α3=2=3þ 5ðLT − 6Þα2=4þOðα5=2Þ, where α≡ b0λ.

Equations (12)–(14) reproduce exactly at arbitrary orders
the OðNÞ scalar model large-N results [e.g., Eq. (5.7) of
Ref. [35]], as can be checked upon identifying the correct
large-N b0 ¼ 1=ð16π2Þ value [35]. These results are also
equivalent to those (at two-loop order) in Ref. [36]—if we
replace b0 ¼ 3=ð16π2Þ by b0=3, as was argued in Ref. [36].
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As we keep the correct b0, Eq. (14) differs from standard
perturbative pressure by λðμ0Þ → λpertðμ0Þ=3: this is not a
problem, simply a different calibration, as λ is yet arbitrary
since the model is not fully specified by any data fixing a
physical input scale, μ0. Indeed, this apparent discrepancy
disappears if expressing our results in terms of the physical
mass: to see it, we solve Eq. (7) now for ~λðmÞ and replace it
in Eq. (14); it gives, simply, Pð1Þ=P0 ¼ 1–15x2=ð8π2Þ þ
15x3=ð8π3Þ þOð10−4x6Þ. But here x ¼ m=T is arbitrary,
as we already used Eq. (7) to fix ~λðmÞ. Now, taking for m
the physical screening mass [34] m2 ≃ ðλ=24ÞT2½1 −ffiffiffiffiffi
6λ

p
=ð4πÞ þ � � �� exactly reproduces the first two terms

of the standard physical pressure [1].
Equation (14) is plotted in Fig. 1, compared with

standard perturbative expansions at one- and two-loop
orders with their notoriously bad scale dependence [1].
Note that at one loop, including, nonminimally, s1 ≠ 0 in
Eq. (5) is actually equivalent to a simple scale redefinition,
μ → μe2s1 ¼ μe−2, in all of our results above.
The two-loop Oðδ1Þ contribution to the free energy, for

δ ¼ 1, takes a compact form in terms of ΣR in Eq. (10):

F 0 ¼
Eδ1
0

ð4πÞ2 þ
T
2

XZ
p

lnðω2
n þ ω2

pÞ −
�
2γ0
b0

�
m2

λ
ΣR þ Σ2

R

2λ
;

ð15Þ

where Eδ1
0 ¼ −m4=½1=ð3b0λÞ þ s1=3� from Eq. (5), and by

abuse of notation the finite part of this already renormalized
expression is meant. The exact two-loop OPT and RG
equations (7) and (8) can be written compactly as

fOPT ¼ 2

3
h

�
1 −

1

b0λ

�
þ 2

3
Sþ Σ0

R

�
S −

1

3λ

�
≡ 0;

fRG ¼ h

�
1

6
þ
�
b1
3b0

− S

�
λ

�
þ 1

2
βð2ÞðλÞS2 ≡ 0; ð16Þ

with h≡ ð4πÞ−2, βð2ÞðλÞ ¼ b0λ2 þ b1λ3, and the reduced
(dimensionless) self-energy Sðm; μ; TÞ≡ ΣR=ðm2λÞ. We
also have, from Eq. (10), Σ0

R ≡ ∂m2ðΣRÞ ¼ λðSþm2S0Þ ¼
γ0λ½lnðm2=μ2Þ − J2ðm=TÞ�. One may also solve the OPT
and RG equations in the high-T expansion approximation,
which is excellent up to large (rescaled) coupling g≡ffiffiffiffiffiffiffiffiffiffi
λ=24

p
∼Oð1Þ values and gives exactly solvable cubic and

quartic algebraic equations, respectively, with unique
physical solutions ( ~m=T > 0, etc.) easily identifiable.
The resulting OPT and RG solutions for ~m=T and P=P0

are consistent with Eqs. (13) and (14) for the first two order
terms perturbatively reexpanded, but they contain appro-
priate modifications at higher orders (detailed expressions
are given elsewhere [26]).
The exact two-loop pressure P=P0 obtained from the RG

equation (4), as a function of g≡ ffiffiffiffiffiffiffiffiffiffi
λ=24

p
, is plotted in

Fig. 1, with scale dependence from exact two-loop running,
compared with one-loop RGOPT and standard perturbative
one- and two-loop pressure. The RGOPT improvement on
convergence and scale dependence as compared to standard
perturbative results is drastic, although a moderate residual
scale dependence appears at two loop, visible on the figure
for (rescaled) coupling values g≳ 0.6. This is not surpris-
ing since the construction relies on a two-loop truncated
basic free energy. At one-loop RGOPT the exact scale
invariance is due to the peculiar form of the exact running
coupling perfectly matching Eq. (13). At two-loop RGOPT
the residual scale dependence reappears first at order λ3:

ΔPð2Þ
RGOPTðμÞ≃ ð0.075 ln μ=μ0 − 1.92Þg6, i.e., one order

higher than the normally expected λ2 from standard RG
properties. Moreover, including, nonminimally, s2 ≠ 0
(thus catching a RG part of the three-loop contributions)
modifies the perturbative pressure only at order λ3, but it
further improves slightly the (nonperturbative) scale
dependence, as intuitively expected and seen in Fig. 1.
More remarkably, with s2 ≠ 0 the two-loop pressure almost
coincides with the one-loop result up to a relatively large
g ∼ 1. In Fig. 1 we also compare the RGOPTwith the SPT
two-loop results—i.e., discarding E0 in Eq. (5), taking
a ¼ 1=2 in Eq. (6), and using Eq. (7)—and another
prescription using instead the screening mass [34], similar
to the QCD HTLpt prescription [20]. Note that the missing
one-loop RG invariance from the unmatched m4 ln μ terms
in Eq. (3) remains somewhat hidden at one- and two-loop
thermal expansion order since, perturbatively, m4 ∼ λ2,
explaining why it plainly resurfaces at three-loop λ2 order
in SPT [18] or, similarly, HTLpt [20]. In contrast, the
RGOPT scale dependence should further improve at higher
orders: built on perturbative RG invariance at order k for
arbitrary m, the mass gap will exhibit remnant scale
dependence as ~m2 ∼ λT2½1þ � � � þOðλkþ1 ln μÞ�; thus,
the dominant scale dependence in the free energy, coming
from the leading term −s0m4=λ, should be Oðλkþ2Þ.

FIG. 1. RGOPT P=P0ðg≡
ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ at one and two loop vs
standard perturbative and two-loop SPT pressures with scale
dependence πT < μ < 4πT.
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Finally, we can combine the OPT and RG equations (16)
to obtain the full two-loop RGOPT solution, fixing ~m=T
and ~λ ¼ 24~g2 for a given input scale μ. For μ ¼ 2πT, we

find ~m=T ≃ 0.912, ~g≃ 0.825, Pð2Þ
RGOPT=P0 ≃ 0.907, and

the scale variation for πT < μ < 4πT is consistent with the
one above shown.
In conclusion, we have shown how resummations of

thermal perturbative expansions based on a variational
mass should be appropriately modified to restore pertur-
bative RG invariance, missed by previous OPT, SPT, and
HTLpt analogous methods. The resulting RGOPT has a
different interpolation prescription, Eq. (6), uniquely dic-
tated by universal first order RG coefficients a ¼ γ0=b0.
The RG equation gives us an alternative constraint to
determine the nonperturbative variational mass and cou-
pling, instead of solely using the optimization (7). The
RGOPT pressure has exact one-loop RG or scale invari-
ance, and a scale dependence and stability at two-loop
order that is drastically reduced up to relatively large
coupling values as compared with most other resummation
approaches. For thermal QCD we anticipate a similarly
improved scale dependence and stability from appropriate
RGOPT adaptations of HTLpt.
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