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The fine-structure constant and the electron mass in string theory are determined by the values of scalar
fields calledmoduli. If the darkmatter takes on the form of such a light modulus, it oscillates with a frequency
equal to its mass and an amplitude determined by the local dark-matter density. This translates into an
oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned
experiments, combinedwith a dedicated resonant-mass detector proposed in this Letter, canprobe dark-matter
moduli with frequencies between 1 kHz and 1GHz, withmuch better sensitivity than searches for fifth forces.
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Introduction.—In string theory, the values of the funda-
mental parameters, such as the fine-structure constant or the
electron Yukawa coupling, are functions of scalar fields
called moduli. In a typical vacuum, there are several moduli
that describe geometric properties of the extra dimensions
of space, such as their size. The masses of the moduli are
model dependent. Several moduli often remain massless as
long as supersymmetry is unbroken.
For a supersymmetry-breaking scale near a TeV, the

moduli can acquire amass as large as 0.1meVor a frequency
of 20 GHz. These rough estimates are often corrected by
small coefficients, such as loop, logarithmic, and large-
volume factors, that make the moduli masses significantly
lighter [1–4].Moduli associatedwith small numbers, such as
the electron Yukawa coupling, are also naturally much
lighter. One may even speculate that the ultrasmall cosmo-
logical constant is associated with an ultralight dilaton
whose mass is of order the Hubble scale [5].
In the absence of a general theoretical mass range for

moduli, we will only concern ourselves with experimental
constraints. These scalars are an excellent dark matter (DM)
candidate when produced through the misalignment mecha-
nism. In order for a scalar to be a good DM candidate that
gravitationally clumps at galactic scales, it has to be heavier
than 10−22 eV [6]. For scalar DM to bewell characterized as
a scalar field, instead of individual particles, itsmassmust be
lighter than about 0.1 eV. Such aDMcandidate—denoted by
the field ϕ—can cause fundamental constants to oscillate in
time [7]. We consider couplings to the electron e and the
electromagnetic field strength Fμν,
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where GN is Newton’s constant (ℏ ¼ c ¼ kB ¼ 1 through-
out). We can identify ϕ with an electron Yukawa (electric
charge) modulus if dme

≠ 0 (de ≠ 0). If ϕ constitutes the
local DM energy density ρDM, it can be approximated by

ϕðt;xÞ≃
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mϕ

cos ½mϕðt − v · xþ � � �Þ�; ð2Þ

where jvj is the relative velocity of the DM with respect to
Earth, roughly equal to the virial velocity vvir in our Galaxy.
The field oscillation occurs at an angular frequency equal to
the DMmass,mϕ, and exhibits high fractional temporal and
spatial coherence of v−2vir ∼ 106 and v−1vir ∼ 103, respectively,
due to a low velocity dispersion of the DM [8]. In such a
background, the electron mass me and the fine-structure
constant α can fluctuate along with ϕ according to

meðt;xÞ ¼ me;0½1þ dme

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕðt;xÞ�; ð3Þ

αðt;xÞ ¼ α0½1þ de
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕðt;xÞ�: ð4Þ

The size of any atom is of order 1=αme, and will oscillate if
me or α fluctuate. For a single atom, this is a tiny effect.
However, it is enhanced when the atoms are stacked, as in
a solid.
In this Letter, we show how this amplification by the

number of atoms, in combination with resonant effects, can
be exploited to search for scalar DM with existing
technology already used to search for gravitational wave
(GW) radiation. In what follows, we explain how the signal
arises, describe the reach of existing experiments, and
discuss future directions, including a new experimental
proposal. Finally, we compare with other constraints on
scalar DM and find an improvement in sensitivity by
several orders of magnitude.
Experimental signature.—The effect of aDMmodulus on

a low-loss massive antenna can be captured by considering
the response of a harmonic oscillator. An otherwise free
mass M on a physical, dissipative spring of equilibrium
lengthL, resonant frequencyω, and a quality factorQ obeys

M

�
ẍþ ω

Q
_xþ ω2ðx − LÞ

�
¼ Fth þ Fext; ð5Þ
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with thermal Brownian noise forces Fth in the spring and
external noise forces Fext. In the presence of a modulus, the
equilibrium size of the spring is oscillating in time
L≃ L0 cosðmϕtÞ. Once we define the “displacement dis-
tance” D≡ x − L, the influence of the modulus is revealed
as a new force,

M

�
D̈þ ω

Q
_Dþ ω2D

�
≃ −ML̈þ Fth þ Fext; ð6Þ

up to Oð1=QÞ-suppressed force terms. The modulus-
induced force is analogous to the tidal force caused by a
GW [9], except that the modulus induces a monopole strain
instead of a quadrupole strain pattern. This intuition can be
extended to continuous acoustic systems by describing the
modulus as a scalar GWwith an effective isotropic Riemann
curvature tensor

Reff
i0j0 ¼ δijḧ; ð7Þ

where the effective strain h≡ −δα=α − δme=me ¼
−ðdme

þ deÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕ inherits the coherent properties of

the DM field oscillation as described below Eq. (2). The
response of a resonant-mass detector to modulus DM may
thus be extracted from well-known strategies for detecting
monochromatic gravitational-wave radiation.
A resonant-mass detector is acoustically equivalent

to a combination of independent harmonic oscillators,
since the displacement from equilibrium in an elastic solid
can be decomposed into normal modes as Dðx; tÞ ¼P

nDnðtÞunðxÞ. In a spherical geometry, we can take
unðxÞ ¼ r̂unðrÞ, since only spherically symmetric
(l ¼ 0) modes are excited by a scalar strain. For a sphere
of radius R with uniform density ρ and longitudinal
(transverse) sound speed cl (ct), these mode functions
can be found in Ref. [10]. They have resonant angular
frequencies ωn ¼ clkn, with kn ≃ nπ=R. We choose a
normalization such that unðRÞ ¼ 1, and define the effective
mode mass Mn through

R
V d

3xρun · un0 ¼ δnn0Mn. With
these conventions, Dn is the absolute displacement of the
surface from the equilibrium radius Req, and satisfies
Eq. (6) with an effective modulus force

Fmod;n ≡ −Ri0j0

Z
V
d3xρuinxj ¼ −ḧM∘RJn; ð8Þ

with M∘ the mass of the sphere and a coupling factor Jn ≡
3R−4

R
R
0 drr3un that decouples for the higher harmonics as

Jn ∼ n−2. Modulus DM can be detected if the force in
Eq. (8) exceeds the noise forces Fth and Fext.
Existing resonant-mass detectors.—The response of

resonant-mass detectors to gravitational waves was first
described by Weber [11,12]. Resonant-mass GW detectors
have made great strides in sensitivity since the first “Weber
bars” (see Ref. [13] for a historical review), so far
culminating in a network of third-generation experiments
[14,15] consisting of cryogenic, ton-scale, cylindrical

antennas operating at around 900 Hz. Despite quality
factors in excess of a million, these detectors achieve a
sizable fractional bandwidth of Oð10%Þ by amplifying the
surface displacement of the main antenna with a series of
smaller mechanical and electrical resonators tuned to
the frequency of the lowest longitudinal harmonic of the
cylinder. The AURIGA Collaboration has achieved the
widest bandwidth, operating at a noise level S1=2hh ≲
10−20 Hz−1=2 for 850 Hz≲ f ≲ 960 Hz for an optimally
polarized gravitational strain hij [16]. Recasting as a
projected reach for modulus couplings at unit signal-to-
noise ratio (SNR ¼ 1) with 8 years of data on tape yields
the red curve in Fig. 1.
Astrophysical objects provide for naturally occurring

resonant-mass antennas. The fundamental breathing mode
of Earth, which has a 20.46-min period and Q ≈ 7500, was
studied with a dedicated seismometer in Ref. [17] over a
7-month period. The observed vertical acceleration noise
spectrum of 7.6 × 10−8 ms−2 Hz−1=2 corresponds to a
spherical strain sensitivity S1=2hh ≈ 8.4 × 10−14 Hz−1=2 and
a constraint jhj≲ 4.5 × 10−17. Interpreted as a 95% C.L.
limit on modulus DM couplings, this yields jde þ dme

j ≲
2.5 × 10−4 in a 1.3 × 10−4 fractional bandwidth around fϕ ≈
8.1 × 10−4 Hz (black line inFig. 1).Modern examinations of
Earth’s higher harmonics [18] and crust excitations [19–21]
may also be interesting, but likely have worse strain
sensitivity. Lunar [22] as well as helio- and asteroseismic
observations [23–25] have shown more promise towards
detecting (quadrupole) metric variations; monopole strain
excitations of these systems merit further investigation.
Future resonant-mass detectors.—Given the unknown

modulus mass, there is a clear need for a wideband detector,
or a narrow-band one with scanning ability. Proposals in the
former category, such as “xylophone” arrays [26,27] and
DUAL detectors [28–30], have been proposed for GW
searches in the 1–10 kHz band, and would have excellent
reach for moduli as well. The wider-band DUAL proposal
of Ref. [30] with a capacitive read-out may reach sensitivity
to quadrupole strains at the level of 10−22 Hz−1=2. The same
noise spectrum for monopole strains would yield a reach as
represented by the pink curve in Fig. 1 after 1 y of data.
(This is a useful proxy, because although a modulus would
excite higher-frequency modes in that setup, we expect a
comparable sensitivity with only minor read-out changes).
In this Letter, we propose a scanning experiment because

of its simplicity and feasibility with current technology. The
basic experimental concept, illustrated in Fig. 2, is that of a
freely suspended sphere, whose acoustic modes can be
frequency-shifted by dialing the temperature and detected
via an interferometric read-out of the sphere’s surface
displacement.
By exploiting the temperature dependence of elastic

properties, adjustment of each mode’s angular frequency
ωn ¼ clkn becomes possible.We propose a spherical antenna
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of radius R ¼ 0.3 m made out of a material such as C65500
copper-silicon alloy (high-silicon bronze “A”), for which cl
varies by about 5% below 100 K while maintaining a high
quality factor (Q ∼ 106) [31,32]. Copper-based alloys are
alreadyused in spherical resonant-massGWdetectors [33,34]
for their high density ρ ≈ 8 × 103 kg=m3, sound speed
cl ≈ 4 × 103 m=s, and thermal conductivity.
Brownian noise forces are broadband. By the fluctuation-

dissipation theorem [35], their single-sided noise spectral
density is SthFF ≃ 4TMnωn=Qn around each mode, for a
temperature T ≫ ωn. Using Eq. (8), this translates to a near-
resonance strain spectrum Sthhh ≃ ½ð4TRMnÞ=ðM2∘Qnc3l Þ�×
½1=ðk3nR3J2nÞ� or an amplitude of 1.5 × 10−21 Hz−1=2ðMn=
M∘k3nR3J2nÞ1=2 at 4 K, with the latter factor scaling as ∼n1=2.
A Fabry-Pérot interferometer, schematically drawn in

Fig. 2, can measure the sphere’s total surface displacement
x ¼ Dþ δReq through changes in the cavity length Lcav ¼
1 mm, which cause laser light to fluctuate in intensity on a
photodiode. The shot-noise-limited displacement spectral
density is SdsxxðωÞ ¼ Sdsxx;0½1þ ðω=ΩcavÞ2�, where the cavity

bandwidth isΩcav ≡ π=2FLcav and the cavity finesse is taken
to be F ≈ 3 × 104. We assume a baseline sensitivity of
Sdsxx;0 ≈ 10−38 m2Hz−1 ∼ λ=F 2P, achievable with a laser
power P ∼ 1 mW and optical wavelength λ [36].
Converting to a strain spectral density yields a near-resonance
strain sensitivity of SdshhðωnÞ1=2 ≈ 10−25 Hz−1=2ðMn=M∘JnÞ
for ωn ≪ Ωcav, scaling as ∝ n2 (above the cavity bandwidth,
like n3). Thermal noise sources in the interferometer can be
kept subdominant above 1 kHz with fused silica mirror
substrates, silica and tantala coatings, and a laser beam width
of 1 mm [37,38]. Vibration isolation schemes with −200 dB
attenuation exist for similar geometries [39], and should be
able to reduce typical seismic noise spectra≲10−10 mHz−1=2

[40] to negligible levels above 100Hz.Monopolemodesmay
be discriminated frommultipole and other spuriousmodes via
calibration hammer techniques [33] or multiple cavities [41].
The reach of our proposal is shown in Figs. 1 and 3. The

resonant frequencies are adjusted in fractional increments
of 10−6 (the fractional signal bandwidth) by varying T in
2 mK steps. If each shot lasts a time tshot ¼ 103 s, a strain
hshotðω; TiÞ≃ Shhðω; TiÞ1=2t−1=4shot ð2π=mϕv2virÞ−1=4 can be
detected at SNR ¼ 1, depicted by the thin blue curve in
Fig. 3 for a temperature Ti ¼ 4 K. After an integration time
tint ¼ 5 × 107 s, a set of 5 × 104 shots has a strain reach
hintðωÞ≃ ½Pihshotðω; TiÞ−4�1=4 less than 10−20 in a 5%
band around each l ¼ 0 harmonic up to n ∼ 100. Better
sensitivity may eventually be attained at ultracryogenic
temperatures. Since this precludes scanning of the resonant
frequencies, traditional capacitive transducer read-outs as
in Refs. [33,34] or more advanced interferometer schemes
[42] would have to be employed.

FP
laser

photodiode
Cu-Si

FIG. 2. Schematic of the proposed setup: a Cu-Si sphere whose
surface displacement is monitored by a Fabry-Pérot (FP) inter-
ferometer. Elements encircled by the dotted lines are independ-
ently suspended and isolated from vibrations.
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FIG. 1. Scalar field parameter space, with mass mϕ and corresponding DM oscillation frequency fϕ ¼ mϕ=2π on the bottom and top
horizontal axes, and couplings of both an electron mass modulus (di ¼ dme

) and electromagnetic gauge modulus (di ¼ de) on the
vertical axis. Natural parameter space for a 10-TeV cutoff is depicted in green, while the other regions and dashed curves represent
95% C.L. limits from fifth-force tests (“5F,” gray), equivalence-principle tests (“EP,” orange), atomic spectroscopy in dysprosium (“Dy,”
purple), and low-frequency terrestrial seismology (“Earth,” black). The blue curve shows the projected SNR ¼ 1 reach of a proposed
resonant-mass detector—a copper-silicon (Cu-Si) sphere 30 cm in radius—after 1.6 y of integration time, while the red curve shows the
reach for the current AURIGA detector with 8 y of recasted data. Rough estimates of the 1-y reach of a proposed DUAL detector (pink)
and several harmonics of two piezoelectric quartz resonators (gold points) are also shown.
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Yet higher frequencies may be explored by microme-
chanical resonators, for which the unfavorable scaling of
Brownian noise with size may be mitigated by using clever
geometries and extremely low-loss materials. The proposal
of Ref. [43] to detect high-frequency GWs in curved-plate
quartz crystals is also sensitive to modulus DM. An
isotropic strain excites longitudinal acoustic modes, which,
due to the piezoelectric nature of the quartz crystal, may be
picked up by an electronic circuit. On-resonance strain
sensitivities down to 10−22 Hz−1=2 are expected for up to a
hundred modes per crystal [43]. (Methods to increase the
bandwidth are under development [44]). The modulus
coupling reach of harmonics in two 20 mK sensors from
Ref. [43] is illustrated by the gold points in Fig. 1.
Non-acoustic experiments.—The phenomenology of

light scalars with modulus couplings as in Eq. (1) extends
beyond the acoustic signature described above.
Through scalar exchange, two macroscopic bodies

with mass M1 and M2 experience a Yukawa force
with a range set by m−1

ϕ . Its strength relative to gravity

is αð1;2Þmod ≡ ðd1Q1Þðd2Q2Þwith diQi ≡ dme
Qme

þ deQe. We
follow the notation of Ref. [45], in which Qme

(Qe) is the
fractional amount of electron-mass (electromagnetic)
energy relative to the rest-mass energy M of the object.
Searches for fifth forces at a length scale L are sensitive

to moduli with mass mϕ ∼ 1=L. A number of experiments
have set constraints on composition-independent jαmodj ≲
10−2.5 for 10−21 eV≲mϕ ≲ 10−4.3 eV [46]. Rescaling by
typical modulus charges Qme

∼ 1=4000 and Qe ∼ 1=500
yields approximate constraints on jdme

j and jdej shown in
gray in Fig. 1.

The modulus force also violates the equivalence
principle: two test masses M1 and M2 experience a
different acceleration in the presence of a third one, M3,

even thoughM1 ¼ M2, provided thatα
ð1;3Þ
mod ≠ αð2;3Þmod . TheEöt-

Wash experiment [47] hasmeasured the fractional differential
acceleration of beryllium and titanium in the Earth’s gravi-
tational field to be ðaBe − aTiÞ=a ≈ ð0.3� 1.8Þ × 10−13.
Using Q⊕

i ðQBe
i −QTi

i Þ ¼ f−2.42 × 10−9;−3.00 × 10−6g
for i ¼ fme; eg, one arrives at the 95% C.L. upper limits
jdme

j≲ 1.05 × 10−2 and jdej ≲ 2.98 × 10−4 for mϕ ≪
1=R⊕, shown in orange in Fig. 1. Bounds for mϕ ≳ 1=R⊕
are estimated by rescaling the limit according to Ref. [48].
Lunar laser ranging sets less stringent constraints [45,49].
Besides mediating EP-violating forces, a modulus field

sourced by a massive body could also slightly alter
fundamental constants around it. When sourced by the
Sun, the modulus appears as an annual modulation of the
fine-structure constant or the electron mass with a known
phase, and with amplitude proportional to the Sun’s
modulus charges Q⊙

i and the �1.65 × 10−10 annual varia-
tion of the gravitational potential of the Sun on the Earth’s
orbit. The absence of such modulation in spectroscopy data
of two different dysprosium isotopes [50] constrains jdej to
be less than 2.1 × 10−2 for mϕ ≪ ðA:U:Þ−1. Atomic clock
pairs have the capability to greatly improve upon this
technique, and extend it to other couplings.
Assuming that the field ϕ comprises part or all of the DM

density, themodulus can be probed by spectroscopic searches
for time-varying fundamental constants [7]. Recently, Fourier
analysis of transition energies in two dysprosium isotopes has
set the tightest constraints on jdej for mϕ ≲ 3 × 10−18 eV
[51], as indicated by the purple curve in Fig. 1. In the
background field of Eq. (2), a mass M also experiences a
(gradient-suppressed) force that may be observable in differ-
ential accelerometers, such as free-mass GW detectors [7].
Black hole superradiance [52] excludes scalars with

6 × 10−13 eV≲mϕ ≲ 2 × 10−11 eV regardless of abun-
dance and the couplings in Eq. (1), unless ϕ has sufficiently
strong self-interactions [53]. Stellar cooling bounds are
not competitive with force tests for the masses under
consideration [54]. A detailed summary of astrophysical
constraints can be found in Ref. [7].
Discussion.—The mature technology of resonant-mass

detectors provides a new way to probe scalar DM that
couples to the electron mass and electric charge, with a
sensitivity beyond that of EP and fifth-force tests, over a
wide range of frequencies.
Resonant-mass detectors are better suited for scalar DM

searches than free-mass interferometers such as LIGO,
which have much reduced sensitivity to scalar GWs [55]
because of laser phase noise. By using equal-length
interferometer arms, this noise can be canceled while
leaving a quadrupole GW signal unaffected. However, this
strategy also suppresses the scalar DM signal up to small
gradient effects [7].
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FIG. 3. Strain reach jhj at SNR ¼ 1 as a function of frequency f
after an integration time tint ¼ 5 × 107 s (thick blue curve),
consisting of a 5% fractional frequency scan by varying the
temperature between 4 and 100 K in increments, each tshot ¼
103 s long. Reach for one “shot” at 4 K is shown by the thin blue
curve (up to the third harmonic, for clarity). Equivalence-
principle and fifth-force exclusions are shown in orange and
gray, while strains below the green line are natural for an electron
Yukawa modulus with a 10-TeV cutoff.
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A scalar DM candidate frequently appears in string
theory as a modulus, the dilaton, or axions, even though
for the latter the expected modulus couplings are far below
our sensitivity levels [7]. Designing setups with wideband
sensitivity is crucial given the unknown masses of these
DM candidates. Theoretically, large couplings imply large
radiative corrections to the mass of scalar particles, and thus
bias towards a model-independent minimum mass, m2

ϕ ≳
½1=ð4πÞ3�d2me

y2eGNΛ4 þ ð1=4πÞd2eGNΛ4 [1]. This natural-
ness criterion is satisfied inside the green bands of Fig. 1 for
a hard cutoff of Λ ≈ 10 TeV.
The technology behind resonant-mass detectors has

steadily improved over the past five decades, and offers
a unique opportunity to search for a well-motivated DM
candidate over a wide range of masses and couplings in the
immediate future.
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