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Having analytical instances of the eigenstate thermalization hypothesis (ETH) is of obvious interest,
both for fundamental and applied reasons. This is generally a hard task, due to the belief that nonlinear
interactions are basic ingredients of the thermalization mechanism. In this article we prove that random
Gaussian-free fermions satisfy ETH in the multiparticle sector, by analytically computing the correlations
and entanglement entropies of the theory. With the explicit construction at hand, we finally comment on the
differences between fully random Hamiltonians and random Gaussian systems, providing a physically
motivated notion of randomness of the microscopic quantum state.
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Introduction.—The problem of quantum thermalization
can be stated as follows: Given microscopic unitarity, how
do Gibbs ensembles emerge?
If a many-body quantum system is set in an initial pure

state jψð0Þi, the evolved state jψðtÞi ¼ UðtÞjψð0Þi is pure
and time dependent, so it can never become a time-
independentmixed densitymatrix, such asGibbs ensembles:

UðtÞjψð0Þihψð0ÞjU†ðtÞ ≠ ρGibbs; ð1Þ

where ρGibbs is any Gibbs distribution. The dynamical
emergence of Gibbs ensembles from unitary dynamics will
be termed the problem of quantum thermalization. This
problem is almost as old as quantum mechanics itself. For a
self-contained recent review, with an excellent account of
references and historical rigor, see [1].
Although exact thermality cannot be attained within

unitary evolution, we might still expect approximate
thermality for the actual measurements done in experi-
ments, the correlation functions of the theory. Given an
observable O of the theory, it is written mathematically as

hψðtÞjOjψðtÞi ¼ TrðρGibbsOÞ � error; ð2Þ

stating that the correct expectation value, as measured by
the evolving quantum state, is equal to a Gibbs ensemble
average, up to some error. This error has to be negligible in
the thermodynamic limit for the previous relation to be
nontrivial, and for the thermal expectation value to be a
good approximation of the correct one.
To understand such behavior it was proposed in [2] that

the typical energy eigenstate jEai of the quantum system
satisfy themselves the previous property:

hEajOjEai ¼ TrðρGibbsOÞ � error; ð3Þ

stating that the expectation value in the energy basis is well
approximated by the thermal correlator. The previous

phenomenon was coined eigenstate themalization in [2],
but was earlier noticed in [3], in the context of quantum
spin systems. At any rate, as argued in [1], both previous
equations can be seen as more precise formulations of the
original question above, and as such they are hypotheses
about the nature of quantum systems. Indeed, the second
equation (3) is commonly known as the eigenstate thermal-
ization hypothesis (ETH).
Relations (2) and (3) suggest various obvious questions:

(i) What type of systems display such behavior? Over which
range of initial states and eigenstates do they display it?
(ii) What is ρGibbs? Can we find the effective temperature
T ¼ 1=β from the pure state scenario? (iii) What is the
“error”?
Although we have a great deal of intuition about these

questions through the connection between ETH and
random matrices, to the author’s knowledge, see [1], no
time-independent Hamiltonian containing only few-body
interactions has been proven to satisfy relations (2) and (3).
The difficulty to prove such behavior is related to the belief
that nonlinear interactions are fundamental to the quantum
thermalization mechanism.
The objective of this Letter is to study a family of

quantum systems displaying ETH, satisfying relation (3).
Contrary to common belief, these systems are “Gaussian,”
containing only two-body interactions; see (4). We further
compute the errors, both in correlations and entanglement
entropies. These errors differ from the random matrix
approximation, providing a physically motivated measure
of “randomness” of the quantum state.
We want to remark that although these systems might

seem unnatural from several points of view, they indeed
serve as microscopic toy models of black physics. The
underlying reason is that they are examples of systems with
no locality structure whatsoever. The Hamiltonian connects
every oscillator with every other democratically, a charac-
teristic feature of black hole physics [4–11].
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From a different perspective, since these systems display
ETH, entanglement entropy is extensive across all biparti-
tions, even for “vacuum states” in the sectors with a large
number of particles. This could be of interest for the type of
questions raised in [12].
Random free fermions, entanglement entropy, and

ETH.—The family of Hamiltonians we wish to study is
the following:

H ¼ α
XN
i¼1

c†i ci þ η
XN
i;j¼1

c†i Vijcj; ð4Þ

where α and η are parameters with energy dimensions, c†i
and ci are creation and annihilation operators of spinless
free fermions, with usual anticommutator relations, and the
couplings Vij are independent random Gaussian real
numbers with zero mean and unit variance. The matrix
ðηVÞij ≡ ηVij is therefore a random matrix taken from the
Gaussian Orthogonal Ensemble (GOE) ensemble with
deviation σV ¼ η (see [13] for a beautiful and modern
treatment of random matrices).
The “free” nature of the model allows an exact solution

via diagonalization of the matrix V. If ψa, for a ¼ 1;…; N,
are the eigenvectors of V with eigenvalues ϵa,XN

j¼1

Vijψ
a
j ¼ ϵaψ

a
i ; ð5Þ

then the Hamiltonian can be written as

H ¼
XN
a¼1

ðαþ ϵaÞd†ada ¼
XN
a¼1

Ead
†
ada; ð6Þ

where d†a and da are new creation and annihilation
operators defined by

da ¼
XN
i¼1

ψa
i ci: ð7Þ

All eigenstates are constructed by choosing a set A of
particles and associating it with the following eigenstate:

jΨNpi ¼
Y
a∈A

d†aj0i; ð8Þ

where j0i is the state annihilated by all da, and Np is the
number of particles in the state, a number which will play a
key role below. Notice that there are ð NNp

Þ independent states
for a given Np.
The objective of this Letter is to study the structure of

these eigenstates, associated with (4). We will focus on the
number operator, the two-point correlation functions, and
entanglement entropies. Since the correlations and entan-
glement structure of the eigenstates are symmetrical under
Np → N − Np, a manifestation of particle-hole symmetry
in this model, we will only focus on Np ≤ N=2.
To compute the correlations and entanglement entropies,

we will make use of the theory of random matrices, which

deals with the statistical properties of eigenvalues and
eigenvectors of matrices such as ηV (see [13,14], and [15]
for an extensive treatment of random matrices). In relation
to the eigenvectors, the main assertion is that the orthogonal
matrix of eigenvectors ðψ1;…;ψNÞ is distributed according
to the Haar measure on the orthogonal groupOðNÞ. For our
purposes, this means that the eigenvectors have indepen-
dent and random Gaussian entries, up to normalization.
Matemathically,

½ψa
i � ¼ 0 ½ψa

i ψ
b
j � ¼

1

N
δabδij; ð9Þ

where ½p� denotes the average of the random variable p
over the matrix ensemble.
For the eigenvalues we will only need Wigner’s semi-

circle law, accounting for the probability of having an
eigenvalue equal to λ:

PðλÞ ¼ 2

π2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − λ2

p
; ð10Þ

where R2 ≡ 4Nη2, and where we remind the reader that this
law concerns the eigenvalues of ηV, a matrix with deviation
equal to η; see the Hamiltonian (4). To ensure a zero energy
vacuum eigenstate ofH we assume R ¼ 2

ffiffiffiffi
N

p
η < α. Given

(10), the first two moments for the eigenenergies Ea are�X
a∈A

Ea

�
¼ Npα

��X
a∈A

Ea

�
2
�
−
�X
a∈A

Ea

�
2

¼ NpNη2 ð11Þ
With the previous statistical information about eigenvalues
and eigenvectors we can now compute the correlation
functions for the state (8) with Np particles:

CΨ
ij ¼ hΨNp jc†i cjjΨNpi ¼

XN
a;b¼1

ψa
i ψ

b
j hΨNp jd†adbjΨNpi

¼
X
a∈A

ψa
i ψ

a
j ; ð12Þ

where the last sum just runs over the subset A of particles
chosen. The previous correlator is itself a random variable,
a functional of the random eigenvectors ψa. By using (9)
we obtain

½CΨ
ij� ¼

Np

N
δij; ½CΨ

ijC
Ψ
kl� − ½CΨ

ij�½CΨ
kl� ¼

Np

N2
δikδjl: ð13Þ

We thus can see the correlation matrix as the sum of a
“thermal” part and an error, the error being a randommatrix
taken from the GOE ensemble with deviation σ2C ¼
ðNp=N2Þ. Notice that the thermal part just depends on
the “macroscopic” parameter Np, and cannot distinguish
between the ð NNp

Þ independent states in the corresponding

Np sector. Also notice that the thermal part is a good
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approximation in the window Np ≫ 1. As might have been
expected, and anticipating results, Np ¼ N=2 will corre-
spond to the high temperature sector.
To prove ETH for this system, relation (3) described in

the introduction, we need to compute the corresponding
correlation matrix in the thermal ensemble. This is given by

Cβ
ij ¼

1

Z
Trðe−βHc†i cjÞ ¼

1

Z

XN
a;b¼1

ψa
i ψ

b
jTrðe−βHd†adbÞ

¼
XN
a¼1

ψa
i ψ

a
j n

Ea
β ; ð14Þ

where nEa
β ¼ 1=ðeβEa þ 1Þ is the average number operator

for a fermionic oscillator at temperature T ¼ 1=β, and Z ¼
Trðe−βHÞ is the usual partition function. The thermal corre-
lation matrix is again a random variable, due to the random-
ness of H. Since there is no correlation between eigenstates
and eigenvalues, the mean and variance are given by

½Cβ
ij� ¼ ½nβ�δij ½Cβ

ijC
β
kl� − ½Cβ

ij�½Cβ
kl� ¼

½ðnβÞ2�
N

δikδjl;

ð15Þ
where

½nβ� ¼
Z

R

−R
PðλÞnλβdλ ½ðnβÞ2� ¼

Z
R

−R
PðλÞðnλβÞ2dλ: ð16Þ

We did not succeed in analytically computing the averages
for all β. In the large temperature limit, βα → 0, they read

½nβ� ¼
1

2
−
αβ

4
; ½ðnβÞ2� ¼

1

4
−
αβ

4
; ð17Þ

whereas in the low temperature limit, βR → ∞, we have
slightly more complicated expressions:

½nβ� ¼
2e−αβI1ðβRÞ

βR
→

ffiffiffiffiffiffiffiffiffi
2

πβR

s
e−βðα−RÞ

βR
; ð18Þ

and

½ðnβÞ2� ¼
e−2βαI1ð2βRÞ

βR
→

e−2βðα−RÞ

βR
ffiffiffiffiffiffiffiffiffiffiffi
4πβR

p ; ð19Þ

where I1ðxÞ is the modified Bessel function of the first kind.
Since to ensure a zero energy vacuum eigenstate of H we
assumed R ¼ 2

ffiffiffiffi
N

p
η < α, from (15), (18), and (19) we

conclude that the leading diagonal approximation of the
thermal correlation matrix is valid at all temperatures.
Now we are ready to compare both correlation matrices,

the exact eigenstate correlations (13) versus the thermal (15)
ones, allowing us to arrive at the following conclusions:
(i) For Np ≫ 1, a pure eigenstate with Np particles can

be effectively approximated by a Gibbs distribution at
temperature β satisfying ðNp=NÞ ¼ ½nβ�, the difference
being subleading in the thermodynamic limit. Random
free fermions then constitute an explicit analytical example

of ETH (3), an example in which we know the effective
temperature and the error size in terms of the microscopic
parameters of the theory.
(ii) ForNp ∼Oð1Þ, approximating pure states by thermal

ensembles is not a valid approximation.
These features can be made clearer by studying entan-

glement entropy. For Gaussian systems, as shown in [16],
one can compute the entanglement entropy of a given
subsystem A directly from the correlation matrix. More
concretely, given a subsystem Awithm degrees of freedom,
knowledge of CΨ

ij ¼ hΨjc†i cjjΨi, where i; j ∈ A, allows for
the computation of the entanglement entropy. It is given by

SA ¼ −
Xm
i¼1

ðλi log λi þ ð1 − λiÞ logð1 − λiÞÞ; ð20Þ

where λi, with i ¼ 1;…; m are the m eigenvalues of the
matrix CΨ in the given subsystem A. The proof relies only
on the fact that the correlation matrix and the reduced
density matrix share the same set of eigenvectors.
Although formula (20) is fairly simple, one still needs to

compute the eigenvalues of CΨ, and this is not always
possible analytically, even for one-dimensional systems;
see [16]. Indeed we were not able to compute the
entanglement entropy for all Np. We will compute it in
the two standard limiting cases: the thermal regime,
specified by Np ≫ 1, and for Np ¼ 1, corresponding to
the nothermal phase.
Let us begin with the simpler case of having just one

particle. The wave function is then given by

jΨ1
ai ¼ d†aj0i ¼

XN
i¼1

ψa
i c

†
i j0i ¼

XN
i¼1

ψa
i jii; ð21Þ

where jii≡ c†i j0i. This state is considered in [17], in
relation to the many-body-localized phase transition.
Because the state is fully supported in the single particle
sector, the entanglement of any subsystem A can be
expressed as

SA ¼ −pA logpA − ð1 − pAÞ logð1 − pAÞ; ð22Þ
where pA ¼ P

i∈Ajψ ij2; see [17] for an explicit derivation
of the previous formula. The average and variance of pA are
½pA� ¼ m=N and σ2pA

¼ m=N2. Because the variance of the
probabilities pA is small in comparison to the mean value,
we Taylor expand to compute the average entanglement
entropy, following [18] for the case of random quantum
field theory (QFT) states. For the case at hand, the
entanglement entropy of a subsystem A of m ≤ N=2
degrees of freedom in the state (21) is given by

½SΨ1

m � ¼ −
m
N
log

m
N
−
�
1 −

m
N

�
log

�
1 −

m
N

�
−

1

2ðN −mÞ ;

ð23Þ
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where we remark that on average does not depend on the
particle type chosen, labeled by a, and that the last term in
the previous equation is always subleading in the thermo-
dynamic limit. The previous formula for entanglement
entropy is a monotonic growing function for 1 ≤ m ≤
N=2, with SΨ

1

1 ≃ ðlogN=NÞ and SΨ
1

N=2 ≃ log 2. This is a
very small amount of entanglement, and certainly not
extensive with the number of sites m. Therefore it cannot
be faithfully represented as a thermal entropy, signaling that
the small Np sector does not satisfy ETH.
For the high Np sector we follow a novel approximate

method developed in Appendix A of [18]. The key aspect to
observe is that for Np ≫ 1 the correlator matrix (13) is a
diagonal matrix plus a random matrix with parametrically
smaller entries. Writing CΨ ¼ C̄Ψ þ δCΨ, to first order the
eigenvalues of CΨ are given by λi ≃ λ̄i þ δλi, where λ̄i ¼
Np=N and δλi are the eigenvalues of a random matrix of
size m with deviation σ2

CΨ ¼ ðNp=N2Þ; see (13). Using
Wigner’s semicircle law (10), for a matrix of size m with
such variance, these eigenvalues satisfy ½δλi� ¼ 0 and
½ðδλiÞ2� ¼ mðNp=N2Þ. Therefore, for m≲ Np, plugging
these eigenvalues into (20), Taylor expanding in δλi and
finally taking the average, we obtain the following formula
for the average entanglement entropy of a subsystem of size
m≲ Np in the multiparticle state jΨNpi:

½SΨNp

m � ¼ mS
Np

1 −
m2

2ðN − NpÞ
; ð24Þ

where we have defined

S
Np

1 ¼ −
Np

N
log

Np

N
−
�
1 −

Np

N

�
log

�
1 −

Np

N

�
; ð25Þ

corresponding to the thermal entropy per degree of freedom
for a state with Np ≫ 1 particles. Notice that to change
from Np to the effective temperature T ¼ 1=β we just need
to use ðNp=NÞ ¼ ½nβ�.
Given the explicit expressions (23) and (24) we conclude

the following:
(i) Entanglement entropy is well approximated by the

thermal entropy for subsystems with sizes smaller than the
number of particles in the given eigenstate. For bigger
subsystems we cannot state anything with certainty, but it is
tempting to speculate a slower growth of entanglement
entropy for m≳ Np. For Np ≃ N=2 the thermal approxi-
mation is valid for every subsystem.
(ii) The random nature of the state seems to increase with

the number of particles.
Error scalings as randomness measures.—Until now we

have focused on the structural properties of the eigenstates
of the Hamiltonian (4), in particular, on their thermal
nature. It is now fruitful to check the differences between
traditional approaches to quantum chaos and ETH based on
fully random Hamiltonians, and the exact solution we

found. This will provide a physically motivated quantifi-
cation of the “randomness” of the quantum state.
Although this section is self-contained, for extensive

reviews about the traditional approach to ETH and quantum
thermalization based on “typicality” arguments and random
matrices in the contexts of quantum information theory,
condensed matter, and black hole physics see [1,19,20]. To
proceed we first write the Hamiltonian (4) as

H ¼ Hfree þ η̄Hint: ð26Þ
In most cases in which Hint contains nonlinear interactions
we cannot diagonalize H exactly. The traditional approxi-
mation assumes that the Hamiltonian can be taken from one
of the random matrix ensembles; see [15]. The approxi-
mation implies the famous chaotic spectra, and more
concretelyWigner’s semicircle law (10). More interestingly
for the concerns of this Letter, it also implies ETH as we
show below; see [1,18–22].
Let us begin with the spectrum. Since the dimension of

the subspace with Np particles is ð NNp
Þ, and assuming the

entries of Hint to be random Gaussian variables with zero
mean and unit variance, the eigenenergies satisfy

Erandom
a ¼ Npα� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi�
N
Np

�s
η̄; ð27Þ

where a ¼ 1;…; ð NNp
Þ. The first two moments of the

random approximation can be computed from Wigner’s
semicircle law:

�
Erandom
a

�
¼ Npα

��
Erandom
a

�
2
�
−
�
Erandom
a

�
2

¼
�
N
Np

�
η̄2. ð28Þ

On the eigenvectors side, the assumption of a random
Hamiltonian implies that the eigenvectors are random
vectors in the corresponding subspace:

jErandom
a i ¼

Xð N
Np

Þ

i¼1

ψa
i jii; ð29Þ

where jii is a basis in the Np subspace and

�
ψa
i

�
¼ 0

�
ψa
i ψ

b
j

�

¼ 1�
N
Np

� δabδij. ð30Þ

See [18] for a recent detailed treatment of these type of
vectors. Using (30), the statistical properties of Cr

ij ¼
hErandom

a jc†i cjjErandom
a i are
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½Cr
ij� ¼

Np

N
δij ½ðCr

ijÞ2� − ½Cr
ij�2 ¼

�
N−2
Np−1

�
�

N
Np

�
2
∼O

�
1

ð NNp
Þ
�
:

ð31Þ
Comparing formulas (28) and (31), corresponding to the
random Hamiltonian approximation, with the exact solu-
tions (11) and (13), and with the thermal result (15), we
conclude the following:
(i) Appropriately fixing η̄ in terms of η, Np, and N, the

mean and variance of the eigenvalues is the same for the
exact Hamiltonian (4) than for its random approximation.
(ii) The average correlation matrix ½Cij� coincides for all

cases, the differences lying on variances. These variances
furnish good quantifiers of randomness in the quantum state.
They subtly distinguish between macroscopically equal
phases, such as eigenstates of fully random Hamiltonians
and eigenstates of random free fermions. The scaling
properties of the errors in typical eigenstates seem a fruitful
field to explore in the context of quantum thermalization.
(iii) The random Hamiltonian approximation seems valid

for all subsystem sizes m (notice that in the one particle
sector is exact for all subsystems), while the Gibbs
distribution seems to hold only for m≲ Np.
Conclusions.—In this Letter we studied aspects of the

Hamiltonian (4), such as the spectral properties (11), corre-
lationmatrix (13), and entanglement entropies, (20) and (24).
They can be expanded in 1=N, where N is the number of
spinless fermions of the model. The leading term in this
expansion is always the thermal result, given by (15), the
effective temperature being found in terms of the macro-
scopic parameterNp characterizing the sector. The family of
Hamiltonians (4) thus satisfy (3), furnishing explicit exam-
ples of the eigenstate thermalization hypothesis (ETH). The
conclusion is remarkable, since it implies that ETH is typical
within the space of Gaussian Hamiltonians. Since it is also
typical in the full space of Hamiltonians [1], as proved by
relation (31), it is tempting to conclude that it is typical for
Hamiltonians with random 2; 3;…; N body interactions,
such as the model presented in [9].
We found that the entanglement properties of big sub-

systems in these eigenstates are different from the thermal
result. For a sector with Np ≫ 1 particles, we were able to
prove thermality of entanglement entropies until subsystems
of size OðNpÞ. For bigger subsystems we speculated with a
slower growth of entanglement entropy, but otherwise further
study is needed to unravel its nature. These resultsmight have
impact in black hole physics, in which the present picture is
that given byPage in [23], a picture inwhich thermality holds
for every subsystem, and inwhich deviations from thermality
are assumed to be those given by the random Hamiltonian
approximation.
The last section was devoted to studying the differences

between the approach to quantum chaos and ETH based on
random matrices; see the reviews [1,19,20] and the exact

solution of the Hamiltonian (4). These differences lie in the
deviations from the thermal result. The “errors” in Eqs. (2)
and (3) are good quantifiers of the “randomness” of the
quantum state. Their scaling properties seem an exciting new
route to explore in the context of quantum thermalization.
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