
Pattern Generation by Dissipative Parametric Instability

A.M. Perego,1,2,* N. Tarasov,1,3 D. V. Churkin,1,4,5 S. K. Turitsyn,1,4 and K. Staliunas2,6
1Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, United Kingdom

2Departament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, E-08222 Barcelona, Spain
3Institute of Computational Technologies SB RAS, Novosibirsk 630090, Russia

4Novosibirsk State University, Novosibirsk 630090, Russia
5Institute of Automation and Electrometry SB RAS, Novosibirsk 630090, Russia

6Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, E-08010 Barcelona, Spain
(Received 14 September 2015; published 13 January 2016)

Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and
engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism
leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase
modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at
symmetrically located wave numbers k and −k in alternating order. The properties of the dissipative
parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e.,
the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric
instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed
instability mechanism is generic and can naturally occur or can be implemented in various physical
systems.

DOI: 10.1103/PhysRevLett.116.028701

The formation of patterns in nonlinear physical and
biological systems represents the conceptually important
idea of how simple objects can self-evolve into complex
structures through instabilities. Spontaneous pattern for-
mation in a variety of nonlinear spatially extended systems
is initiated by modulation instabilities (MIs): the homo-
geneous state becomes unstable with respect to growing
spatial modulation modes in a given range of wave
numbers [1]. Possibly the best-known class of MI is the
Benjamin-Feir (BF) instability, originally introduced in
fluid dynamics [2,3] and later identified in different areas
of science, such as plasmas [4], nonlinear optics [5–7], and
other fields (see, for example, the review [1]). The physical
essence of the BF instability is that some spatial modulation
modes with symmetric wave numbers k and −k can
synchronize with the strong homogeneous mode with
k ¼ 0 due to a nonlinear frequency shift in self-focusing
(modulationally unstable) media, and, thus, can experience
exponential growth.
Another fundamental MI—ubiquitous in physics—is the

Faraday instability, which has been known since even
before the BF instability. This instability results from the
periodic modulation in time of an appropriate dispersive
parameter of the system [8]. Faraday unstable modes
oscillate at half the frequency of the parametric forcing.
The Faraday instability can be understood as a synchro-
nization of the growing modes at k and −k with the
homogeneous mode through the periodic parametric driv-
ing. Specifically, when a parameter is time modulated at
frequency 2ω0, the modes grow if their wave numbers k and
−k satisfy the nonlinear dispersion relation ω0 ¼ ωðkÞ.

The Faraday instability has been observed in a variety of
systems: it was originally seen in vertically shaken fluids
[8], and later in periodically modulated chemical systems
[9], vertically shaken granular media [10], periodically
modulated Bose condensates [11,12], and nonlinear fiber
optics. In the latter case, the modulation of nonlinearity or
dispersion in time (piecewise or in a continuous manner)
can initiate instability [13–16] and lead to pattern formation
[17–19]. Typically, the Faraday instabilities and patterns
are studied in BF-stable systems. However, they can also
appear as additional instabilities in BF-unstable cases [20].
In this Letter, we propose a new type of instability, which

we call the dissipative parametric instability. While it shares
some features with the BF and Faraday instabilities, the
dissipative parametric instability is also very distinct from
these two classical cases.
In various applications, both the BF and Faraday

instabilities and the associated nonlinear pattern formation
can be described using a very generic model, the complex
Ginzburg-Landau equation [21] (CGLE), which (in the
case of one spatial dimension) reads

∂A
∂t ¼ μAþ ðb − idÞ ∂

2A
∂x2 þ ðic − sÞAjAj2; ð1Þ

where Aðt; xÞ is the complex field amplitude distributed in
space x and evolving in time t, μ is the gain coefficient, s
and c are the saturation and nonlinearity coefficients, and b
and d are the diffusion and diffraction coefficients. In the
case of Faraday instability, diffraction dðtÞ and/or non-
linearity cðtÞ are periodic functions of time. Note that the
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modulation in time of dissipative parameters, such as μ, s,
or the diffusion b (which effectively acts as dissipation for
large k components), does not result in Faraday instability.
In conservative systems, such as nonlinear fibers and Bose-
Einstein condensates, both the BF and Faraday instabilities
are studied within the framework of the nonlinear
Schrödinger equation (NLSE), the conservative limits of
the CGLE.
The linear stability of the homogeneous solution

of the CGLE with periodic coefficients can be studied
using the Floquet stability analysis. The homogeneous state
Ahs ¼ A0 expðicjA0j2tÞ, in which μ ¼ sjA0j2, is weakly
perturbed by modulation modes aþkðtÞ expðikxÞ and
a−kðtÞ expð−ikxÞ, such that aþkðtÞ, a−kðtÞ ≪ jA0j2.
Calculating numerically the amplitudes of perturbations
after one modulation period, building a matrix map of a
resonator round-trip, and diagonalizing it (see
Supplemental Material [22] for details) allows us to
calculate the Floquet multipliers F. A mode k is considered
unstable when at least one of the absolute values of its
multipliers is greater than 1. In order to visualize the
instability spectrum, we plotted maxðjFðkÞjÞ.
The BF instability, in the CGLE and in its conservative

limit (NLSE), is a long-wave instability, because the band
of unstable wave numbers always extends from k ¼ 0; see
Fig. 1(a). For particular systems, e.g., those described by
the Manakov equations [23] or the Lugiato-Lefever
equation [24], BF is not purely a long-wave instability;
i.e., its spectrum can slightly detach from k ¼ 0. The
Faraday instability is a short-wave instability: the area of
unstable modes is clearly detached from the axis k ¼ 0; see
Fig. 1(c). There are multiple Faraday instability tongues. In
the first tongue, the growing modes oscillate with half the
frequency of the parametric drive; in the second tongue,
they oscillate with the frequency of the drive, and so on.
Another fundamental difference is that BF-unstable modes
grow monotonically, as shown in Fig. 1(b), whereas the
growth of Faraday unstable modes is oscillatory and
synchronized with the parametric drive, as in Fig. 1(d)
(see also the Supplemental Material [22]).
The new type of instability—dissipative parametric

instability—occurs in systems in which dissipative terms
are periodically modulated in time in an antiphase (zigzag)
manner with respect to k and −k modes; see Fig. 2(a).
First, the complex field evolves nonlinearly and homo-

geneously in time according to the CGLE with nonmodu-
lated coefficients. Next, spectral losses are imposed over
the wave number range−Δk at time instant t ¼ Tf=2. Then
a new stage of homogeneous nonlinear evolution takes
place, followed by spectral losses over the wave number
range þΔk at t ¼ Tf. Note that the unmodulated dissipa-
tion in the k domain [constant diffusion coefficient b in
Eq. (1)] or the symmetrically (for k and −k modes)
modulated dissipation does not result in any instability.
Additionally, we would like to point out that the dissipative

term remains positive on average at every instant of time;
i.e., the losses are never converted into gain.
Such antiphase spectrally modulated losses can occur in

periodic (cyclic) systems with spectrally shifted dissipative
components. In the one-dimensional case, dissipative para-
metric instability can arise in transmission fiber systems,
lasers, or amplifiers, in which dissipative elements (such as
filters) are imposed in alternating (zigzag) order in the
frequency domain [25,26]. A laser is a natural example of a
system exhibiting dissipative parametric instability if the
frequency reflectivity profile of one mirror is shifted with
respect to that of the other mirror; see Fig. 2(b). Such
detuning results in periodic antiphase losses at every half-
cavity round-trip.
Another possibility is to implement alternating losses in

the wave number domain. This could be realized in
transverse nonlinear optics, such as self-imaging resonators
[27] or self-imaging arrays of lenses, if access is possible to
the far field distribution at different positions along the
resonator. Selective losses for the þk and −k components
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FIG. 1. (a),(c) Floquet spectrum calculated using the Floquet
stability analysis of the homogeneous solution of the CGLE;
instability occurs above the horizontal continuous line. (b),(d)
The dynamics of complex amplitude aðkÞ of the most unstable
mode (indicated by dashed vertical lines on the instability
spectrum) is calculated by direct integration of the CGLE. Arrows
indicate the direction of temporal evolution. The parameters used
are μ ¼ 1, s ¼ 0.3, b ¼ 0.1 × 10−6, with full integration time
T ¼ 1. In the case of the BF instability [(a),(b)] c ¼ 1,
d ¼ −3 × 10−6. In the case of the Faraday instability [(c),(d)]
c ¼ 4.85, d1 ¼ 5 × 10−6, d2 ¼ 1 × 10−6; a piecewise modulated
diffraction coefficient is also considered, i.e., d ¼ d1 for
0 < t < 0.2 [orange line on (d)], d ¼ d2 for 0.2 < t < 0.4 (red
line), and so on.
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can be imposed by placing corresponding spatial filters; see
Fig. 2(c). The dissipative parametric instability could also
be implemented in dissipative Bose-Einstein atomic or
exciton-polariton condensates in semiconductor microcav-
ities [28]. In the first case, velocity- (momentum-) resolved
losses have to be imposed; in the second case, Bragg
mirrors with suitable reflectivity profiles must be used
[Fig. 4(a), Supplemental Figs. 5(a) and 5(c)[22]].
We calculated the properties of the dissipative parametric

instability in a system described by Eq. (1), modeling
without loss of generality the dissipative elements as super-
Gaussian spectral filters, f1;2ðkÞ ¼ exp½−ðk� k0Þ8=σ8�.
The specific spectral shape of the filter function is not
critical for the properties of the dissipative parametric
instability. We performed the Floquet analysis for losses
that were periodic in time and antiphase in the k domain
(see Fig. 3). The parameters used in the calculations are
μ ¼ 1, s ¼ 0.2, c ¼ 3.5, b ¼ 0.1 × 10−6, d ¼ 5 × 10−6,
k0 ¼ 1822.1, and σ ¼ 1885; the modulation period is fixed,
Tf ¼ 2, except in Fig. 3(d) where Tf has been varied.
The dissipative parametric instability band starts from

k ¼ 0, Fig. 3(a), which makes its spectrum similar to the
BF instability [compare with Fig. 1(a)]. We stress that the
system considered on average as well as in every instant of
time remains in the BF-stable regime. At the same time, the
dissipative parametric instability spectrum has several

tongues, as in Fig. 3(a) and 3(d), which is characteristic
to the Faraday instability. We note that the dissipative
parametric instability spectrum could be also tailored to
make modes with small wave numbers stable, or to modify
the number of instability tongues by changing the dis-
sipation function, such as its shift over frequency and the
modulation period over time.
As in Fig. 3(b), on average, the amplitudes of the

unstable modes grow exponentially, but they oscillate
synchronously with the external forcing like in the case

(a)

(c)

(b)

FIG. 2. (a) Dissipative parametric instability arises if periodic-
in-time losses are introduced asymmetrically in the k domain, so
that the modes with only positive or negative wave vectors are
damped every half of the period Tf . (b) Dissipative parametric
instability can be realized by alternating losses in the frequency
domain, i.e., in a laser with detuned (in frequency) cavity mirrors.
(c) A self-imaging resonator or self-imaging array of lenses with
spatial filter displaced relative to the system’s axis is another
possibility.
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FIG. 3. (a) Spectrum of the dissipative parametric instability.
The dashed line indicates the most unstable mode. (b) Evolution
of the absolute values of the amplitudes of the most unstable
modes aðkÞ and að−kÞ (red and blue lines, respectively). The
losses are introduced at points f1, f2, etc., in time. (c) The
complex amplitude of the mode aðkÞ evolves in loops in phase
space synchronized with external forcing. (d) Spectrum of the
dissipative parametric instability as a function of the modulation
period Tf; the dashed line is the analytically estimated scaling
law of the instability. (e) The generalized phase Φ locks to
the optimum value (dashed line), the point at which the mode’s
amplitudes are growing at the fastest rate, through periodic reset
of the phase at instances of time at which the losses are applied.
(f) Asymptotically stable pattern in a one-dimensional system.
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of the Faraday instability and unlike the monotonic
evolution of BF instability (see Supplemental Fig. 1[22]
for comparison). The complex amplitudes of the modula-
tion modes perform looping in the phase space synchron-
ized with the external modulation of dissipation, as in
Fig. 3(c). The evolution in the phase space for the
dissipative parametric instability is different from the cases
of both the BF and Faraday instabilities.
Despite the fact that, similar to the BF case, modes with

wave numbers close to zero are unstable [see Figs. 3(a) and
3(d)], the dissipative parametric instability exhibits differ-
ent scaling laws compared to the BF instability. Indeed,
whereas in the case of BF instability the instability
spectrum does not scale over the modulation period (system
length) [7], the scaling is well pronounced in the case of
dissipative parametric instability, as depicted in Fig. 3(d).
To characterize the scaling law, we phenomenologically
assumed the parametric resonance condition, as for the
Faraday instability, by imposing that the first unstable mode
oscillates in time at frequency ωf=2, with ωf as the
frequency of the forcing and where wave number kinst
is related to ωf=2 through the dispersion relation. The
resulting analytically derived scaling law (see the
Supplemental Material [22]) coincides well with
the numerical calculation, Fig. 3(d).
How and why the dissipative parametric instability

emerges becomes clear through the calculation of the
generalized phase Φ ¼ φþk þ φ−k − 2φ0, where φþk and
φ−k are the phases of the modes with wave numbersþk and
−k, respectively, and φ0 is the phase of the homogeneous
mode. For a BF-stable system, if the dissipation is not
modulated, the generalized phase Φ evolves freely over
time; this results in periodical growth and decay of
amplitudes of modulation modes depending on the instan-
taneous phase, in such a way that the period-average
amplitude remains the same. In the conservative limit,
such periodically oscillating modes are well known under
the name of Bogoliubov–De Gennes excitations (i.e., the
sound waves of a condensate) [29].
The situation is completely different when the modes at

þk or −k are periodically damped in a zigzag fashion. In
this case, at the instant of time during which the damping is
applied the generalized phase is reset to the value at which
the amplitude is growing; see Fig. 3(e). Despite the
increased dissipation on average, the exponential growth
of the unstable modes sets in. We directly checked that such
dynamics cannot be sustained if both modes were damped
in phase. In this way, the dissipative parametric instability
is fundamentally different from the Faraday instability,
where the modes at þk and −k are modulated in phase.
The dissipative parametric instability eventually leads to

pattern formation. For one-dimensional systems, we pro-
vide an example, in Fig. 3(f), of a stable pattern evolved
from the homogeneous solution. The character of the final
patterns crucially depends on nonlinearity through the

saturation of the amplitudes of unstable modes.
Typically, stable and regular periodic patterns are excited;
however, depending on the parameters, dynamic irregular
patterns are observed, which are characterized by a per-
manent creation and annihilation of the pulselike localized
structures during the temporal evolution (see Supplemental
Fig. 4 [22]).
The increase in nonlinearity leads to a decrease of the

wave number of the modulation pattern; the increase
of the modulation period Tf and the dispersion coefficient
d have the same effect, in agreement with Supplemental
Eq. (9) [22].
Furthermore, an increase of the filters’ width or a

reduction of their separation leads to a lower modulation
wave number; however, a minimum separation is needed in
order to excite the instability.
More comments on the patterns’ characterization,

stability, and temporal evolution can be found in the
Supplemental Material [22].
The dissipative parametric instability is of generic nature

and could also be realized in higher-dimensional systems.
An example is a two-dimensional system that is stable with
respect to the BF instability, and where we apply the profile
of the dissipation function in a zigzagging manner, as
depicted in Fig. 4(a). As a result [see Fig. 4(b)], the
dissipative parametric instability appears with a corre-
sponding instability spectrum and leads to pattern
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FIG. 4. (a) Zigzagging losses in wave number space
(kx, ky), (b) the instability area in (kx, ky) space as obtained
by the Floquet analysis, and (c) 2D intensity patterns. Parameters
are μ ¼ 0.2, d ¼ 0.05, b ¼ 0.08, c ¼ 0.35, s ¼ 0.3, Tf ¼ 5π,
and σ ¼ 1.0905. Losses are centered at k0x ¼ −1, k0y ¼ þ1.
(d) By setting b ¼ 0, the pattern becomes irregular in space and
nonstationary in time.
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formation. Different patterns could be obtained depending
on the system parameters, varying from completely stable
and regular modulation patterns, as in Fig. 4(c), to irregular
ones, as in Fig. 4(d). The resulting periodic patterns in
saturated regimes (when they are stable) are of wave
numbers within the area in k space, where the losses are
modulated. The dissipative parametric instability in 2D
spatial systems could be controlled by managing the shape
of the dissipation function with significant flexibility.
(Further examples of two-dimensional patterns are reported
in the Supplemental Material [22]).
In conclusion, we proposed and examined the dissipative

parametric instability, a novel type of instability that can
lead to pattern formation. The dissipative parametric
instability occurs as a result of the periodic-in-time anti-
phase (zigzagging) modulation of the spectral losses in the
wave number (or frequency) domain. We have shown that
this novel instability can lead to the formation of stable
patterns in one- and two-dimensional systems. The dis-
sipative parametric instability is generic and can occur in
various physical systems, including fiber optics, lasers, and
Bose-Einstein condensates.
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