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Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal
model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of
active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology.
The predicted shapes can be determined from the flow pattern only; they prove to be independent of the
mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology.
In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-
dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of
which have been observed in experiment.
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Cell shapes are highly varied, ranging from spheroidal
[1–4], to spread out and flattened [5], to dendritic [6]. They
are dynamic and can undergo large changes, having func-
tional roles in cell polarization, migration, division, and the
early stages of embryonic development.
While the role of biochemical pathways in regulating cell

shapes has been recognized, for example, in cell division
[7], the shape of a cell is ultimately determined by the
balance of forces acting in the cellular medium. The
mechanical properties of eukaryotic cells are, to a great
extent, governed by the cytoskeleton and in particular the
actin-myosin system, a dynamic meshwork of semi-flexible
polymers. The actin cytoskeleton is not only responsible for
passive rheological properties of cells, but also generates,
by ATP hydrolysis, active stresses in the cell [8–11].
A striking consequence of these active stresses are

cytoskeletal flows at the cell scale. These flows can now
also be induced in biomimetic systems [12]. Cortical flows
are vital to cell migration [1–4,13–16]; recently, they have
been shown to contribute to the regulation of cell polarity
[17–21] and to the formation of the contractile ring in cell
division [22]. In the well-studied case of adherent cells on
planar substrates, the impact of actin flows on cell shape
has been analyzed [5], and the flattened, bean shape of
keratocytes has been captured by several models [23–26].
In this context, a theoretical analysis of possible cell shapes
of nonadherent cells is missing, and general rules to
determine these shapes have yet to be proposed.
In this Letter, we focus on recent observations of shapes of

nonadherent cells of various types, which emerge concomi-
tantly with large-scale, polarized actin flows in the cell
cortex [1,2]. Modeling the cortex as a layer of active gel, we
show that cortical tension anisotropy, induced by cortical

flows, can account for the observed pear-shaped, elongated
phenotype. We demonstrate that the predicted shapes are
related directly to the cortical flow, and are independent of
the underlying mechanism generating the flow. We propose
a phase diagram of cell shapes—largely independent of the
cytoplasmic rheology—that accounts for observations of
(nonpolarized) spherical, elongated [1,2], as well as oblate,
shapes [3].
Model and general considerations.—Before considering

the instability mechanism giving rise to cortical flow, we first
show that simple relations link it to cell shape. Motivated by
experiments on breast tumor cells [3] and on zebrafish
progenitor cells [1], we consider a polarized cell, assumed
axisymmetric about the z axis, with a cortical velocity field

given by v ¼ v θ̂ along its surface in spherical coordinates;
see Fig. 1(c). Note that we are taking a perturbative approach
to find the cell shape: for a steady state vðθÞ, expressed on the
undeformed, spherical cell, we find the resulting cell defor-
mation. This approach assumes that v is small—that the cell
is not far from the instability threshold—and that the
mechanical compliance of the cell is also small (to be made
more precise below). This compliance depends on the
cytoplasmic rheology, which is complex and not well
characterized in vivo. Yet, it is commonly described as fluid
at long times, due, partly, to cytoskeletal filament turnover.
At short times, elastic behavior has been reported,mainly due
to long-lived structures such intermediate filaments and
organelles [27]. Below, wemodel the cytoplasm as a viscous
fluid; in [28], we treat it as an elastic medium. This approach,
which covers both limits of viscoelastic models is, thus,
general, and with it, we find that the cell shape does not
depend strongly on cytoplasmic rheology.
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We now write down the cortical tension components in
the polarized state, as shown in Fig. 1(d). To this end, we
model, separately, the actomyosin dynamics giving rise to
cortical tension and the resulting mechanical response of
the cell. We treat the cortex as a compressible active fluid
with density ρ. Similar to Refs. [1,32], we do not consider
the cortical thickness changes that might result from
instability. We write the total cortical tensions as tθ ¼
T0 þ Tθ and tϕ ¼ T0 þ Tϕ where T0 is the tension (cortex
plus membrane) in the initial, nonpolarized state, and Tθ

and Tϕ are the tension changes in the cortex upon
polarization. We then write Tθ and Tϕ in a generic form,
separating anisotropic, flow-dependent terms from an
isotropic, v-independent one, T iðρÞ [a particular form will
be given in Eq. (11)]

Tθ ¼
2η

R
∂θvþ TQ þ T i; ð1aÞ

Tϕ ¼ 2η

R
cotθv − TQ þ T i: ð1bÞ

In the above, the flow-dependent tension components
consist of viscous parts, with (two-dimensional) cortical
viscosity η, and terms�TQ that depend on the orientational
order of cortical filaments. We have neglected the con-
tribution of the radial velocity of the cortex to the strain
rates along the unit vectors θ̂ and ϕ̂, consistent with our
perturbative approach. In general, velocity gradients in a

fluid composed of anisotropic constituents couple to
nematic order [33,34]. Following Ref. [34], we introduce
the in-plane (traceless) nematic order parameter whose
principal components are Qθθ ¼ ~Q and Qϕϕ ¼ − ~Q. Note

that ~Q > 0 (<0) implies filament alignment parallel to θ̂
(ϕ̂). Ordering of active filaments leads to anisotropic, active
tensions TQ ¼ ζ0 ~Q along θ̂ and −TQ along ϕ̂, where ζ0 > 0

[34]. In the absence of flow, the cortex is assumed to be
deep in the isotropic phase, and therefore, ~Q adiabatically
follows gradients of v: ~Q ¼ ðβ1=χRÞð∂θ − cotθÞv, where
β1 > 0 is the flow alignment parameter and χ > 0 is the
inverse nematic susceptibility. Therefore,

TQ ≃ ζ0β1
χR

ð∂θ − cotθÞv: ð2Þ

At mechanical equilibrium, and neglecting inertia, a
cortical element satisfies the force balance

1

R
∂θTθ þ

cotθ
R

ðTθ − TϕÞ ¼ σθrjR; ð3Þ

where σθrjR is the shear stress in the cytoplasm at the cell
surface, r ¼ R.
We now present the three results of this Letter.
Shape is controlled by cortical flow.—In particular, for a

given vðθÞ, the shape does not depend on the specific
instability model giving rise to flow, as contained in the
choice of T iðρÞ. This result is obtained as follows.
The shape is determined through Laplace’s law, which to

linear order in the surface displacement uðθÞr̂, is

σrrjR ¼ −2T0δH −
Tθ þ Tϕ

R
; ð4Þ

where 2δH ¼ −ðR2 sin θÞ−1∂θðsin θ∂θuÞ − 2R−2u is the
change at OðuÞ in the total curvature, relative to
2H0 ¼ 2=R. Using Eq. (4), we can directly relate u to v.
To find u, we calculate the cortical tensions, ΣT ≡

Tθ þ Tϕ and ΔT ≡ Tϕ − Tθ, and the cytoplasmic stresses
at the surface in terms of v. To do so, the surface variables
are projected onto Legendre polynomials: fðθÞ ¼P

lflPlðcos θÞ, gðθÞ ¼ P
lglP

1
l ðcos θÞ, and hðθÞ ¼P

lhlP
2
l ðcos θÞ, where f ¼ u, 2δH, ΣT, or σrrjR; g ¼ v

or σθrjR; and h ¼ ΔT. Notably,

2δHl ¼
1

R2
ðl − 1Þðlþ 2Þul; ð5Þ

and, thus, generally nonzero for l > 1.
Next, ΣT, appearing in Laplace’s law, can be related

solely to v, circumventing its dependence on ρ. Using
Eqs. (1)–(2) and recurrence properties of Legendre poly-
nomials [35], we find

ΔTl ¼ −
2~η

R
vl; ð6Þ

(a)

(c) (d)

(b)

FIG. 1. Cell polarization and shape change. (a) Unpolarized
zebrafish cell. (b) Elevated contractility leads to polarization.
Cortical flows in the direction of z > 0, with a corresponding
gradient in cortical actomyosin density (myosin II labeled with
green fluorescent protein). (c) Deformed cortical surface (calcu-
lated as described below) is shown in green, and unpolarized
reference state is given by gray dashed line. To lowest order, flow
is parallel to θ̂. (d) A cortical patch, with tensions tθ and tϕ, in
contact with cytoplasm, with stress σ. Images in (a) and (b) are
from Ref. [1]. Scale bars in (a) and (b) are 10 μm.
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where ~η ¼ ηþ ζ0β1=χ; thus, we see that, as relates to cell
shape, filament alignment renormalizes the cortical viscos-
ity, and is, therefore, not needed, per se, to explain the
observed shapes. Using this intermediate result and Eq. (3),
we obtain

ΣTl ¼
2~η

R
ðl − 1Þðlþ 2Þvl þ 2RðσθrjRÞl: ð7Þ

To find the surface stresses, assuming fluid cytoplasmic
behavior, we note that since cytoplasmic flow near the
cortex is of order v, σrrjR ∼ σθrjR ∼ μv=R, where μ is the
cytoplasm viscosity. In comparison, the viscous contribu-
tions of Tθ and Tϕ to Eqs. (3) and (4) scale as ηv=R2. Thus,
the influence of cytoplasm on cell shape is negligible for
R≲ η=μ. A conservative estimate of η=μ is 1 mm [22], and
thus, this inequality holds for most animal cells. A
calculation assuming Stokes flow in the cytoplasm allows,
nonetheless, the determination of the surface stresses [28].
With these results and with Eqs. (4)–(7), we finally obtain
the displacement

ul ¼ −
R
T0

�
μ

lþ 2
þ 2~η

R

�
vl; ð8Þ

for l > 1; the l ¼ 1mode is absent since it corresponds to a
rigid translation along z. Remarkably, we find that the cell
shape can be determined solely from the flow amplitudes,
vl. This result confirms the above scaling argument; thus,
we set μ ¼ 0 for the remainder. Scaling then yields
u=R ∼ ~ηv=T0, and thus, our perturbative scheme assumes
that ~ηv=T0 < 1. Similar expressions to Eq. (8) hold for the
projections of the two components of the displacement ujR
in the case of elastic cytoplasm, as shown in [28]. Thus,
direct relations between cortical flow and cell shape hold
for quite general cytoplasmic rheology.
Tension anisotropy leads to pearlike shape.—To dem-

onstrate our second result, we truncate the mode expansion
at l ¼ 3, which is justified if the cortical instability leading
to polarization occurs not far above the l ¼ 1 instability
threshold.
Since polarized zebrafish cells, for instance, are elon-

gated and asymmetric, we expect that a combination of
l ¼ 2 (symmetric about θ ¼ π=2) and l ¼ 3 (antisymmet-
ric) can qualitatively account for the observed shape. To
proceed further, we calculate the aspect ratio, defined as
A≡ ½2Rþ uð0Þ þ uðπÞ�=½2Rþ 2uðπ=2Þ�. We also calcu-
late the difference between the meridional curvatures at the
poles, given by Δκθ ¼ 2½δHð0Þ − δHðπÞ�. With Eq. (8), we
obtain

A≃ R − 2~ηv2=T0

Rþ ~ηv2=T0

; ð9Þ

a similar expression holds for elastic cytoplasm [28]. Thus,
the sign of v2 determines whether the cell is elongated or
flattened by the cortical flow. We also find

Δκθ ≃ −40
~η

R2T0

v3; ð10Þ

and thus, the sign of v3 determines which of the cell, front
(θ ¼ π) or back (θ ¼ 0), is the more pointed.
Deferring until later the question of what controls the

sign of v2 and v3, they can be related to the tension
anisotropy,ΔT. According to Eq. (6), a negative value of v2
implies ΔT2 > 0; since P2

2ðcos θÞ ¼ 3 sin2 θ ≥ 0, v2 < 0

means that, near threshold for instability, we expect
Tϕ ≥ Tθ. Therefore, negative v2, leading to A > 1, is
consistent with the cell being squeezed perpendicular to,
and elongated along, the z axis. In addition, since
P2
3ðcos θÞ ¼ 15 sin2 θ cos θ, negative v3 implies greater cell

squeezing perpendicular to the z axis near the cell rear
rather than near the front, leading to pear-shaped cells with
a pointed rear. Thus, the lowest cortical flow modes can
account for the observed shape, and, in particular, cell
elongation is a direct consequence of the tension anisotropy
stemming from the flow.
Phase diagram of cell shapes.—Finally, we derive a

shape phase diagram, as a function of parameters governing
cortical actin dynamics. We start by specifying a model for
T i, along the lines of Refs. [1,20,32,36], that drives the
cortical instability. T i contains two terms: one, a molecular
motor-generated contractile part that, for sufficient activity,
causes instability; and, second, a stabilizing term that
smooths the interface between the sparse cell front and
the dense cell rear [1]. These effects are captured by

T i ¼ ζρþ γ

R2 sin θ
∂θðsin θ∂θρÞ; ð11Þ

where ζ > 0 is the contractility strength and γ > 0. In
our model, T i does not depend independently on the
density of bound myosin in the cortex, mb, which is
justified by experiments showing that mb ∝ ρ [1]. We note
that our model is closely related to one that considers the
cortex as an incompressible active gel in which the thick-
ness is the dynamical variable [22,37]; in that context, the
first term above is identified as the constant active stress
integrated over the thickness, while the second term arises
from interfacial tension between cortex and cytoplasm.
The existence of cortical instability can be seen by

linearizing Eqs. (1), (3), (11), and the continuity equation

∂tρþ
1

R sin θ
∂θðsin θρvÞ ¼ −kdðρ − ρ0Þ; ð12Þ

about the nonpolarized state, v ¼ 0 and ρ ¼ ρ0. In Eq. (12),
we have neglected, as done earlier, the contribution of _u=R
to the strain rates. In this equation, the source term
−kdðρ − ρ0Þ accounts for actin turnover, at rate kd.
Performing the linearization and assuming δρ ¼ ρ − ρ0 ¼
ρleλltPlðcos θÞ and v ¼ vleλltP1

l ðcos θÞ, we obtain
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vl ¼
Rαl
η

�
ζ −

γlðlþ 1Þ
R2

�
ρl; ð13Þ

and the dispersion relation λl ¼ −kd þ lðlþ 1ÞClρ0,
where Cl ¼ η−1αl½ζ − γlðlþ 1Þ=R2� and αl ¼ ½lðlþ 1Þþ
ð~η=ηÞðl − 1Þðlþ 2Þ�−1. The cortical mode l becomes unsta-
ble if ζ exceeds ½γlðlþ 1Þ=R2� þ ðkdη=ρ0αlÞ. We note that
this instability is saturated by the interfacial term in T i that
enters, via cortical force balance [Eq. (3)], the nonlinear,
convective term in Eq. (12).
Motivated by experiments on cells [1,3] and on recon-

stituted systems [12] that reveal a monotonically increasing
cortical density and cortical flow directed from front to
back, we assume that only the l ¼ 1 mode is unstable. By
identifying θ ¼ 0 with the cell rear, we are taking ρ1 and v1
as positive; since P1

1 ¼ − sin θ, v1 > 0 implies flow from
front to back, as found experimentally. Thus, we assume
λ1 > 0, the remaining λl s are negative, and jλ1j ≪
jλ2j ≪ jλ3j, etc. At long times after the onset of instability,
the cortex reaches a steady, flowing state. It is the nonlinear
coupling between the l ¼ 1 and higher modes that saturates
the instability and that is responsible for the final cell shape.
The types of polarized cell shapes are summarized in

Fig. 2, in which kd and ζ are varied. Above the line λ1 ¼ 0
(green) all modes are stable, polarization does not occur,
and cells remain spherical; see inset (i). Below this line, the
l ¼ 1 mode is unstable and elongated, or oblate shapes
arise. For small ζ, cells are elongated, as illustrated in inset
(ii), and closely resemble polarized zebrafish cells, includ-
ing the actomyosin-dense, pointed cell rear. For higher ζ,
the shape is oblate, as shown in inset (iii), also with a
pointed, dense rear.
The shape boundaries in Fig. 2 can be understood bygoing

beyond the linear regime presented above, and performing a
weakly nonlinear analysis (WNLA). This is valid for λ1 ≳ 0,
that is, just below the green line in Fig. 2, and we retain
couplings between the l ¼ 1, 2, and3modes.UsingEqs. (12)
and (13), and carrying out the integrals of products of three
Legendre polynomials in Mathematica [38], we obtain dynami-
cal equations for the density modes, ρ2 and ρ3

_ρ2 ¼ λ2ρ2 þ 2C1ρ
2
1 þOðρ22; ρ1ρ3Þ; ð14aÞ

_ρ3 ¼ λ3ρ3 þ
12

5
ðC1 þ 2C2Þρ1ρ2 þOðρ2ρ3Þ; ð14bÞ

where the overdot indicates a time derivative. In the
WNLA, _ρ2 ≃ 0, which, according to Eq. (14a), yields ρ2 ≃
2C1ρ

2
1=jλ2j and, thus, positive according to our hypotheses.

As a result, v2 goes from positive to negative at ζ ¼ 6γ=R2

[see Eq. (13)]. Figure 2 shows that, near λ1 ¼ 0, both v2 and
A − 1 change sign at this value of ζ, validating Eq. (9) and
confirming the importance of the sign ofv2; farther below the
green line, higher modes contribute and the v2 ¼ 0 and
A ¼ 1 curves separate.We have numerically solved Eqs. (3)

and (12) at steady state, using Eqs. (1)–(2), (4)–(8), and (11),
to obtain v2 and A [38].
In addition, according to Eq. (14b), _ρ3 ≃ 0 implies

ρ3 ≃ 24
5
jλ2j−1jλ3j−1C1ðC1 þ 2C2Þρ31. A short calculation

shows, therefore, that v3 < 0 for 12γR−2 > ζ >
γR−2ðα1 þ 6α2Þðα1 þ 2α2Þ−1. In this range, according to
Eq. (10), the cell rear is more pointed than the front, and is
confirmed by Fig. 2.
Finally, we point out that the results presented in Fig. 2

do not qualitatively depend on our assumption of a fluid
cytoplasm. Assuming elastic behavior [28], we find that the
overall cell shape is unchanged [insets (iv) and (v)], and
that the boundary separating A > 1 and A < 1 changes
only slightly (light red curve). In the case of an elastic
cytoplasm, just beneath the cortex, the cytoplasm experi-
ences a shear stress ξv, where ξ is a friction coefficient;
consequently, the l ¼ 1 mode is relevant to the cell shape

FIG. 2. Shape diagram in (kd, ζ) plane. The dark (light) red line
separates regions of elongated and oblate shapes for a viscous
(elastic) cytoplasm. On the black line, v2 ¼ 0. Filled star
indicates, for λ1 → 0þ, the point where v2 vanishes, as obtained
by a WNLA. Straight gray line: λ2 ¼ 0. Nondimensionalizations:
~kd ¼ kdηR2=ðγρ0Þ and ~ζ ¼ ζR2=γ. Cuts along the cell symmetry
plane reveal typical shapes for a fluid cytoplasm: (i), ~ζ ¼ 4,
~kd ¼ 2.5, T0R2=ðγρ0Þ ¼ 20; (ii), ~ζ ¼ 5, ~kd ¼ 2, T0R2=ðγρ0Þ ¼
10.66; (iii), ~ζ ¼ 7.5, ~kd ¼ 3.25, T0R2=ðγρ0Þ ¼ 17.33. Two typ-
ical shapes, for an elastic cytoplasm with Young’s modulus E and
Poisson ratio ν, are shown: (iv), ~ζ ¼ 5, ~kd ¼ 2, ER3=ðγρ0Þ ¼ 8;
(v), ~ζ ¼ 7.5, ~kd ¼ 3.25, ER3=ðγρ0Þ ¼ 22. Note that, for ease of
visualization, we have shown shapes with significant deforma-
tions, though the calculations were done using the perturbative
approach described in the text. Gray scale along contours
indicates ρ=ρ0 at steady-state: high density is dark, and low is
light. ρ is found by solving Eqs. (1)–(3) along with Eqs. (11) and
(12). Cortical thickness is not shown to scale. Other parameter
values in this figure are η=ðξR2Þ ¼ 25, μR=η ¼ 0, ζ0β1=ðχηÞ ¼ 1,
and ν ¼ 0.5.
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since both radial and tangential displacements, ur and
uθ, occur.
We have shown, in this Letter, that anisotropic cortical

tensions, induced by cortical instability, can be responsible
for the typical morphologies of nonadherent cells. We have
demonstrated that the characteristic deformations caused by
cortical surface flows—elongation versus flattening, and
front or back asymmetry—are not very sensitive to the
nature of the cytoplasmic mechanical response. Thus, a
similar approach could be applied at the tissue scale, where
bulk elastic behavior persists on longer time scales. Our
model is likely relevant to understanding the shape sym-
metry-breaking in early developingDrosophila embryos by
surface cell migration [39] and to deformation occurring
during the epiboly stage of zebrafish embryogenesis [40].
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