
How Internally Coupled Ears Generate Temporal and Amplitude Cues
for Sound Localization

A. P. Vedurmudi,1 J. Goulet,1,2 J. Christensen-Dalsgaard,3 B. A. Young,4 R. Williams,4 and J. L. van Hemmen1
1Physik Department T35 & Bernstein Center for Computational Neuroscience–Munich,

Technische Universität München, 85747 Garching bei München, Germany
2Institute of Neuroscience and Medicine - Neuromodulation INM-7, Research Center Jülich, 52425 Jülich, Germany

3Center for Sound Communication, Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark
4Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
(Received 21 May 2015; revised manuscript received 23 August 2015; published 14 January 2016)

In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through
air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely.
By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled
ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these
cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime
with constant time-difference magnification from a high-frequency domain with considerable amplitude
magnification.
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Internally coupled ears (ICE), in which the two tympanic
membranes (eardrums) are functionally coupled by an air-
filled passage through the skull, occur in most frogs, lizards,
alligators, and birds, conservatively, more than 15 000
species. In this auditory system the eardrums are driven
by a combination of external sound pressure and internal
cavity pressure resulting from the vibration of the opposite
eardrums [1–3]. If the interaural distance L between the
eardrums is small, the time difference between excitation of
the opposing membranes due to an external pressure is too
small for effective neuronal processing, precluding sound
localization using temporal cues. Furthermore, for most
vertebrates, the interaural level (or intensity) difference is
negligible, whatever the source direction. With ICE, how-
ever, an animal can amplify the time differences as well as
generate considerable (e.g., ≤ 20 dB) direction-dependent
amplitude differences between the eardrum vibrations.
Thus ICE enables even animals with a small interaural
distance to localize sound sources.
An earlier analytical paper [2] was formulated to explain

data gathered from a few species of Gekkonid lizards [1]. In
contrast, we present here a general model of ICE, which has
been formulated with four goals. First, to be applicable to
the full range of anatomical variation, relative to both head
and tympanum size, observed in animals with ICE. Second,
one of the main anatomical variations among the species
with ICE is the diameter of the coupling passageway; the
model incorporates this (Fig. 1). Third, while not neglect-
ing the pressure-wave’s dependence upon the specific
geometry, our emphasis is on the sensory cues arising
from the dynamical patterns of tympanic displacements. In
so doing we account for a uniform plateau, whatever the
direction θ, in the fraction of internal and interaural time

differences, the so-called time expansion factor, for lower
frequencies (typically, < 0.7 kHz) as well as the amplitude
amplification at much higher frequencies (say, around
1.3 kHz). Fourth, the proffered model relates both the
temporal and intensity domains through the fundamental
frequency f0 of the tympanic membrane, which acts as the
transformer between the external auditory stimuli and the
internal sound processing.
Previous studies [4,5] found that lizards have two discrete

populations of cochlear hair cells, one that responds to
amplitude cues and the other to temporal cues. These two
hair-cell populations both project (ultimately) bilaterally,
giving the organism a neuronal template to contrast the
amplitude and temporal patterns arising from the tympana.
We are following Jørgensen et al. [6] in postulating an
algorithm for determining amplitude (level) differences,
more specifically, a neuronal subtraction of logarithmic
vibration amplitudes of the two membranes. The biological
physics is that of hair-cell response being governed by the
(Weber-Fechner) logarithm of the amplitude whereas the
“subtraction” is that of excitation minus inhibition (E=I) and
is a nonliteral criterion. We refer to this subtraction as the
internal level difference (iLD) and contrast it with the
interaural level difference (ILD), i.e., the logarithmic ampli-
tude difference between the external sound inputs to both
ears. It is also known that certain neurons are sensitive to time
differences between eardrum vibrations [7–9]. We refer to
this metric as the internal time difference (iTD), in contrast to
the interaural time difference (ITD). Herein we demonstrate
how iTDs and iLDs emerge solely due to the internal acoustic
coupling between the eardrums.
The model presented herein is universal in the sense that,

with an appropriate change in parameters, it is applicable
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to all species with ICE. We model the internal cavity as an
air-filled cylinder of length L based on typical head sizes
observed in Nature. We fix the cavity volume Vcav and
calculate the cylinder radius using acav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vcav=πL

p
. The

three-dimensional model for the cavity is illustrated in
Fig. 1. The smaller circles at either end of the cylinder
correspond to the eardrums.
The inputs are modeled as plane waves of a certain

wavelength of a pure tone incident on both ears. Since
typical wavelengths are much larger than the membrane
diameter, we can safely assume the incident pressure to be
of uniform amplitude pex,

p0 ¼ pexeiωteikΔ=2; pL ¼ pexeiωte−ikΔ=2: ð1Þ

Δ ¼ L sin θ is the differential distance between the sound
source and the two ears with θ as the source direction with
respect to the head’s median axis; unless stated otherwise,
θ ¼ �90°. Furthermore, for the (external) interaural time
difference, ITD ¼ Δ=c with c as velocity of sound in air,
while ω ¼ 2πf is the angular frequency of an incident
sound wave. Finally, the wave number is given by k ¼ ω=c.
At our frequencies of interest (< 4 kHz), viscous acous-

tic damping can be neglected so we follow common
acoustic models [10–12] and describe the air inside the
cavity using linear acoustics with cylindrical coordinates.
In this approach, the air moves due to a local pressure
pðx; r;ϕ; tÞ obeying the three-dimensional wave equation

1

c2
∂2pðx; r;ϕ; tÞ

∂t2 ¼ Δð2Þpðx; r;ϕ; tÞ þ
∂2pðx; r;ϕ; tÞ

∂x2 ;

Δð2Þ ¼
1

r
∂
∂rþ

∂2

∂r2 þ
1

r2
∂2

∂ϕ2
: ð2Þ

Δð2Þ is the two-dimensional Laplacian in polar coordinates.
On the eardrum, the air velocity is related to p by [11]

−ρ
∂v
∂t ¼ ∇p: ð3Þ

We require both that p be continuous and smooth in ϕ,
and that the normal velocity vanishes at the borders [10]:
vrjr¼acav ¼ 0. Separating variables, we obtain a specific
solution for frequency f ¼ ω=2π and with spatial part

pqsðx;r;ϕÞ ¼ ðAqseiζqsxþBqse−iζqsxÞfqsðr;ϕÞ;
fqsðr;ϕÞ ¼ Jqðνqsr=acavÞðCqs cosqϕþDqs sinqϕÞ: ð4Þ

Jq is the order-q (q ¼ 0; 1; 2;…) Bessel function of the first
kind and νqs the sth positive zero of J0q. The wave number
in the x direction is given by ζqs ¼ ðk2 − ν2qs=a2cavÞ1=2. The
fqs are an orthogonal set of functions when integrated over
a disk of radius acav. The general solution is given by a
linear combination of pqsðx; r;ϕÞe�iωt.
In order to determine Aqs and Bqs we need an expression

for the membrane vibrations. In vertebrates, the mem-
brane’s inner surface is bound to a cartilage or bony
element of the middle ear (commonly, the extracolumella);
this attachment is typically asymmetrical and places a
significant mechanical load on the membrane [13].
We therefore consider the eardrum as a sectorial mem-

brane rigidly clamped between angles ϕ ¼ �β, meaning
that its vibrating part is limited to a circular sector bet-
ween β < ϕ < 2π − β with vanishing amplitude between
ϕ ¼ �β; cf. Fig. 1. The extracolumella is effectively of
infinite mass and motionless, a reasonable approximation
since the extracolumella and attached proximal elements
are typically (300×) heavier than the rest of the membrane.
Finally, the radius atymp of the equivalent circular

membrane is calculated from the area of a realistic eardrum
of surface A through atymp ¼

ffiffiffiffiffiffiffiffiffi
A=π

p
.

The eardrum is modeled as a damped linear-elastic
membrane obeying

−
∂2u
∂t2 − 2α

∂u
∂t þ c2MΔð2Þu ¼ 1

ρmd
Ψðr;ϕ; tÞ ð5Þ

with displacement uðr;ϕ; tÞ, damping coefficient α,
density ρm, thickness d, and wave-propagation velocity
cM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

T0=ρm
p

where T0 is the membrane tension.
Furthermore, Ψðr;ϕ; tÞ is the total pressure driving the
membrane, which is fixed at its radial boundary, r ¼ atymp

and, due to the extracolumella, at ϕ ¼ �β.
The membrane eigenmodes are found by first solving (5)

in the free, undamped case, i.e., for Ψ ¼ 0 and α ¼ 0. We
substitute

u�mnðr;ϕ; tÞ ¼ gmnðr;ϕÞe�iωmnt; ð6Þ
gmnðr;ϕÞ ¼ sin κðϕ − βÞJκðμmnrÞ; ð7Þ

where κ½m� ¼ mπ=2ðπ − βÞ (m ≥ 1) and Jκ is the order-κ
Bessel function of the first kind; μmnatymp, is its nth zero,

FIG. 1. Because of the coupling of the eardrums through the
internal cavity, an animal equipped with ICE perceives internal
rather than interaural time and level differences. The cavity is
modeled as a cylinder of volume Vcav and length L (radius
acav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vcav=πL

p
). The bold arrows indicate our direction

conventions along the x axis, and the smaller circles at either
end indicate the eardrums with radius atymp ≤ acav.
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and ωmn ¼ cMμmn is the corresponding eigenfrequency.
The gmn are an orthogonal set of functions when integrated
over the membrane disk fr ≤ atymp; β ≤ ϕ ≤ 2π − βg.
We consider the case where the membrane is driven by a

uniform pressure, i.e., Ψðr;ϕ; tÞ ¼ pexeiωt. In the quasista-
tionary state, the forced membrane vibrates with a fre-
quency equal to that of the input. The solution is found by
substituting a linear combination of gmnðr;ϕÞe�iωt into

X∞
m¼1;n¼1

ΩmnCmngmnðr;ϕÞeiωt ¼ pexeiωt; ð8Þ

where Ωmn ¼ ρmd½ðω2 − ω2
mnÞ − 2iαω�. The Cmn can be

calculated through the membrane mode orthogonality.
In ICE, the coupled membranes are driven by both

the external pressure (1) and the internal pressure (2).
Substitution of linear combinations of gmn and the internal
pressure pðx; r;ϕÞeiωt as a linear combination of the
pressure modes (4) into (5) gives

X∞
m;n

ΩmnC
0=L
mn gmn ¼ p0=L − pð0=L; r;ϕÞ; ð9Þ

u0=Lðr;ϕ; tÞ ¼
X∞

m¼0;n¼1

C0=L
mn gmnðr;ϕÞeiωt; ð10Þ

where ðx ¼Þ0 and ðx ¼ÞL denote the ends of the cylinder.
We have also canceled the time-dependent terms in (9).
Because of the no-penetration condition, we equate the

air velocity (3) to that of the surface composed of the
eardrum and the remaining cylinder base atymp < r < acav.
This velocity is nonzero on the vibrating membrane and
zero on the extracolumella and remaining cylinder base;
cf. Fig. 1, indicating the context of the above boundary
condition. In our convention, velocities along the x axis out
of the cylinder are taken to be positive.
We now face the problem that the membrane and

cavity modes are not mutually orthogonal. In other words,
each membrane mode couples with every cavity mode.
We circumvent this problem by approximating [14] the
boundary conditions for (2) and (3) in that we effectively
replace each membrane by a circular piston operating on
the internal pressure p and moving with the membrane’s
average velocity _uave0=L so that

uave0=L ¼ 1

πa2cav

Z
dSu0=L; _uave0=L ¼ iωuave0=L; ð11Þ

vxð0; r;ϕÞ ≔− _uave0 ; vxðL; r;ϕÞ ≔ _uaveL : ð12Þ

The second relation in (11) directly follows from (10). By
doing so, we implicitly exploit the fact that typical vibration
amplitudes for tympanic membranes are of the order of
nanometers. We can therefore still use the same cavity
eigenmodes as before. Furthermore, the higher cavity
modes have eigenfrequencies that are in general well

beyond (> 10 kHz) the typical lizard’s hearing range
and will not play a significant role. The modal expansion
of the air velocity is computed by substituting (4) in (3).
This is the piston approximation as depicted in Fig. 2.
A direct consequence of the piston approximation is that
the higher pressure modes vanish and internal pressure is
only composed of the 00 modes, corresponding to a
standing wave along the x axis,

pðx;r;ϕ; tÞ¼ ρω2L
2kLsinkL

½uave0 coskðL−xÞþuaveL coskx�eiωt:

Finally, by substituting this result into the membrane
equation (5), we can calculate uave0=L as a function of the
input direction and frequency,

2ρc2

L
uave0=L ¼ pL þ p0

1=Λþ Γþ
∓ pL − p0

1=Λþ Γ−
; ð13Þ

where

Λ ¼ ρc2

Vcav

X∞
m;n

ðR gmnÞ2
Ωmn

R
g2mn

;

Γþ ¼ −kL cot kL=2; Γ− ¼ kL tan kL=2; ð14Þ

so that jΛj ≤ ðρc2S=V0Þ
P

m:n1=jΩm;nj < ∞ by Cauchy-
Schwarz, with S as the tympanic area. Λ quantifies the
frequency response of an uncoupled membrane whereas the
Γ� result from the internal pressure. In order to calculate Λ
we chose a cutoff of N ¼ 30 modes. Higher modes are
suppressed by the high damping at their corresponding
eigenfrequencies.
In order to compare our model with experimental

results, we define the average vibration velocity in dB re
mms−1Pa−1, meaning the decibel velocity in mm/s for an
input pressure amplitude of 1 Pa as vdB ¼ 20 log10 j _uave0=Lj.
Using parameters based on standard anatomical data
(see Table I) and an extracolumellar angle β ¼ π=30, we
get membrane-vibration velocity cM ¼ 5.4 m=s for the
Tokay gecko (Gecko) and cM ¼ 2.9 m=s for the water
monitor (Varanus)—a rather different perspective.

FIG. 2. Left: exact membrane boundary conditions. The veloc-
ity of air (vx) equals that of the membrane ( _u0=L). Right: piston
approximation. The membrane is approximated by a circular
piston moving with the membrane’s average velocity and with
boundary conditions (12) applied to (2) and (3). The piston
approximation refers to (2) and the boundary condition for the
pressure p in the three-dimensional cavity, not to the motion (5)
of the eardrum itself.
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Before proceeding we turn to a few experimental checks
of the general ICE theory. The price we pay for generality
is that we do not delve into possible microstructures of
the tympana. Figures 3(a) and 3(b) show the respective
frequency dependence of the membrane vibrations for
ipsilateral θ ¼ 90° and contralateral θ ¼ −90° stimuli for
both Gecko and Varanus.
In the case of Gecko, the contralateral response has a

minimum near f0, whereas the spectral response of
Varanus shows multiple peaks corresponding to higher
membrane eigenfrequencies. The occurrence of multiple
peaks instead of a single one in the biophysically relevant
range is due to the fact that the Varanus eardrum is heavily
underdamped [much smaller α; cf. Eq. (5)], resulting in
higher modes being less suppressed. Nevertheless, our ICE
model explains the frequency behavior in both cases.
In the following, we focus on three universal aspects of

ICE: (1) The internal time difference (iTD), which for
frequencies < f0 greatly exceeds the interaural time differ-
ence (ITD); (2) the internal level difference (iLD), which
exhibits a pronounced maximum once the iTD has strongly

decreased; and (3) the segregation of the iTD and iLD
domains by the fundamental frequency f0 of the tympa-
num. Both iTD and iLD depend on the sound-source
direction.
The internal time difference (iTD) corresponds to the

actual time difference between left and right membrane
vibrations as experienced by the animal,

iTD ¼ Argð _uave0 = _uaveL Þ=ω: ð15Þ
For Gecko, the interaural time difference (ITD) equals
Argðp0=pLÞ=ω ¼ L sin θ=c, the time taken by sound to
travel across the head. It is independent of frequency and
for our parameters it is ≈64 μs for θ ¼ �90°. Figures 4(a)
and 4(b) show the frequency and direction dependence of
the iTDs for Gecko and Varanus, respectively. In the case
of Gecko, the iTDs have a low-pass response; i.e., they are
more or less constant up to a certain frequency and drop
sharply thereafter, with iTD=ITD ¼ 1 at f ≈ f0. From a
neuronal-processing point of view, this is convenient as it
mirrors the behavior of the ITDs but is strongly increased
by a factor of about 3 [15]. The number 3 is not unique,
rather the value depends on the specific geometry of the
internal cavity. Figure 4(b) illustrates its variation.
Although the membrane vibration amplitudes are direc-

tional by themselves, the difference between left and right
tympanum is more sensitive to θ. For the input (1), the
internal level difference (iLD) is defined as the logarithmic
difference between the left and right (0=L) membrane
amplitudes of (8),

TABLE I. System parameters: Gecko and Varanus

Parameter Gecko Varanus

Interaural distance L 22 mm 16 mm
Eardrum radius atymp 2.6 mm 2.6 mm
Membrane density ρm 1 mg=mm3 1.2 mg=mm3

Eardrum thickness d 10 μm 30 μm
Cavity volume Vcav 3.5 ml 2.0 ml
Fundamental frequency f0 1.05 kHz 0.4 kHz
Damping coefficient α ≈2611s−1 ≈350s−1

(b)

FIG. 3. Experimental and calculated vdB for ipsi- (θ ¼ 90°) and
contralateral (θ ¼ −90°) stimuli for Gecko (top) and Varanus
(bottom). The flaccid membrane of Varanus (with low α) gives
peaks at f0 as well as at higher membrane resonances. As
elsewhere, all membrane eigenfrequencies are indicated by
vertical dashed lines; cf. Fig. 5(b). The first resonant peak (or
trough) allows a straightforward determination of tympanic
eigenfrequency f0 in the alive animal. All experimental data
presented were gathered by using laser Doppler vibrometry.

(a)

FIG. 4. Frequency and direction dependence of the iTDs for
Gecko (top) and Varanus (bottom). (a) For Gecko, the iTDs
exhibit a plateau of iTD ≈ 3 ITD up to about f ¼ f0 and sharply
fall thereafter. As indicated, the plateau exists irrespectively of the
direction θ; cf. left column. The iTDs can thus be effective low-
frequency cues. (b) For Varanus, the iTDs slowly increase up to
f0 and then decrease; the discontinuity is an artifact of 2π. The
young animal can therefore only exploit a restricted low-
frequency range of iTDs up to, say, 200 Hz, nevertheless
illustrating that the time expansion factor iTD/ITD can differ
from 3 appreciably.
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iLD ¼ 20Log10juaveL =uave0 j ¼ 20Log10j _uaveL = _uave0 j;
uaveL =uave0 ¼ ð1þ BÞ=ð1 − BÞ ð16Þ
where

B ¼ i½ð1þ ΛΓþÞ=ð1þ ΛΓ−Þ� tanðkΔ=2Þ ð17Þ
is direction dependent through Δ ¼ L sin θ. The Γ� in (17)
stem from (14). Once left and right inputs effectively have
the same amplitude, we can put the interaural level differ-
ence (ILD) equal to zero. For Gecko, the iLD has a band-
pass-like behavior. It is zero for both very low and high
frequencies and peaks close to the membrane eigenfre-
quency f0; cf. Fig. 5(a). The iLDs steeply increase across
θ ¼ 0° and are at a maximum or minimum at θ ¼ �90°. For
Varanus, Fig. 5(b) shows an iLD spectrum with multiple
peaks near membrane resonances, corresponding to a much
lower damping (smaller α). Moreover, at the fundamental
membrane eigenfrequency f0, the directional response
peaks at θ ¼ �30°. A possible explanation of this deviating
behavior is that the experiments were performed on
juvenile monitor lizards, suggesting that increased mem-
brane damping and cavity volume in adults should give
similar results to those shown for the adult Gecko.
With ICE we have come across a hearing system that

relies on iTDs at low frequencies and iLDs at higher
frequencies, with the transition between the two regimes

being governed by the fundamental eigenfrequency f0 of
the tympanic membrane; see Fig. 6. In this way the
fundamental frequency of the eardrum creates a partition
of the sensory landscape.
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(a)

FIG. 5. Calculated frequency and direction dependence of the
iLDs for Gecko (top) and Varanus (bottom). (a) For Gecko, the
iLDs peak close to f ¼ f0 and decrease slowly thereafter. They
can therefore serve both as effective high-frequency hearing cues
and as an efficient means of determining f0 in alive animals.
Clearly, the higher tympanic eigenmodes play no role. (b) For
juvenile Varanus with small α and f0 ≈ 400 Hz, we see corre-
sponding peaks also at higher membrane eigenmodes.

FIG. 6. Transition between the iTD and iLD frequency regime
for directions θ ≠ 0°. At lower frequencies iTDs work better as
directional cues, e.g., with iTD=ITD ≈ 3 (blue plateau) for adult
geckos, while at higher frequencies the iLD becomes pro-
nounced, even though for most lizards the external ILD ≈ 0.
The transition between the two kinds of cues is governed by the
eardrum’s fundamental frequency f0.

PRL 116, 028101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

028101-5

http://dx.doi.org/10.1242/jeb.01511
http://dx.doi.org/10.1242/jeb.01511
http://dx.doi.org/10.1121/1.3455853
http://dx.doi.org/10.1007/BF01475622
http://dx.doi.org/10.1073/pnas.97.22.11736
http://dx.doi.org/10.1073/pnas.97.22.11736
http://dx.doi.org/10.1002/cne.902950403
http://dx.doi.org/10.1002/cne.902950403
http://dx.doi.org/10.1007/BF00218414
http://dx.doi.org/10.1016/j.brainresbull.2007.10.044
http://dx.doi.org/10.1016/j.brainresbull.2007.10.044
http://dx.doi.org/10.1038/nn.2325
http://dx.doi.org/10.1038/nn.2325
http://dx.doi.org/10.1152/jn.00004.2011
http://dx.doi.org/10.1152/jn.00004.2011
http://dx.doi.org/10.1007/BF00693629
http://dx.doi.org/10.1007/s10162-008-0130-2
http://dx.doi.org/10.1007/s10162-008-0130-2

