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White light emitting diodes (LEDs) based on III-nitride InGaN=GaN quantum wells currently offer the
highest overall efficiency for solid state lighting applications. Although current phosphor-converted white
LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full
potential of solid state lighting could be exploited only by color mixing approaches without employing
phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different
colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers
from a systematic drop in efficiency, known as the “green gap,” whose physical origin has not been
understood completely so far. In this work, we show by atomistic simulations that a consistent part of
the green gap in c-plane InGaN=GaN-based light emitting diodes may be attributed to a decrease in the
radiative recombination coefficient with increasing indium content due to random fluctuations of the
indium concentration naturally present in any InGaN alloy.
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III-nitride-based light emitting diodes (LEDs) have
become since their breakthrough in 1993 [1] the most
promising candidates for ultrahigh efficiency solid state
lighting (SSL), earning Nakamura, Amano, and Akasaki
last year’s Noble Prize in Physics. Currently, the power
conversion efficiency of blue InGaN=GaN LEDs is exceed-
ing 80% [2], and wide adoption of ultraefficient SSL
solutions would allow for substantial increase in energetic
efficiency of generic lighting and to potential energy saving
[3]. Usually, white light emission is obtained by partially
converting the emission of a blue LED to the yellow-green
spectral range by means of a phosphor. This conversion is
associated with an energy loss known as Stokes’ loss, which
is in the order of 25% and therefore limits the highest
attainable white phosphor-converted LED efficiency to well
below 100% [3]. This loss mechanism can be eluded by
eliminating the phosphor-based down-conversion and using
direct color mixing instead, combining the light of several
LEDs emitting at different wavelengths, usually blue, green,
red, and possibly yellow. In fact, it has been pointed out
recently that in order to exploit the full potential of SSL, it
will be necessary to eventually eliminate the phosphor-based
down-conversion by moving to color mixing approaches
based on semiconductor-only multicolor electrolumines-
cence [3–5]. This will allow for the highest possible
efficiency in light generation, described by the internal
quantum efficiency (IQE), and for smart-lighting applica-
tions requiring particular emission spectra or detailed control
on color mixing [3] and for increased lifetime.
The most important issue hampering the transition to

phosphor-free solutions is the “green gap.” The green gap

indicates a severe drop in efficiency of green-yellow
emitters compared to blue and red ones [6], for III-nitride
and III-phosphide technology, respectively, as shown in
Fig. 1. The low efficiency of green LEDs is particularly
critical, since phosphor-free white LEDs based on color
mixing require at least a green emitter with wavelength
around 530 nm [7], lying nearly at the center of the green
gap. Therefore, the efficiency of an all-semiconductor
white light source is limited by the efficiency of the green
emitter, and in fact today’s white phosphor-converted

FIG. 1. The green gap. Maximum external quantum efficiency
(EQE) of different commercial nitride and phosphide LEDs
(spheres), illustrating the green gap problem. Data points have
been taken from Ref. [7]. The lines are guides to the eye. The stars
give the EQE of the nitride single-quantum-well LEDs from
Ref. [8] which we have used for comparison with simulations.
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LEDs have higher efficiency than green LEDs [3]. As a
consequence, to reach ultraefficient white LEDs, it is of
paramount importance to understand the origins of the
green gap.
The most advanced technology for green LEDs is based

on c-plane InGaN=GaNmulti-quantum-well LEDs, as used
for blue LEDs but with higher indium content in the InGaN
quantum wells (QWs). To understand the green gap, it is
therefore necessary to study the changes in device perfor-
mance with increasing indium content.
It is known that both decreasing material quality and

increasing quantum confined Stark effect (QCSE) due to
the high polarization fields in c-plane InGaN=GaN QWs
reduce LED efficiency at increasing indium content [8,9].
The former leads to increased nonradiative recombination,
whereas the latter reduces the overlap between electron and
hole wave functions and thus the associated momentum
matrix elements. Recent experimental results suggest,
however, that the decrease of the radiative recombination
coefficient with increasing indium content is stronger than
expected from QCSE alone [8]. A possible explanation for
the additional decrease in radiative recombination rate
could be localization of electrons and holes in the QW
plane due to statistical fluctuations in the InGaN alloy
[10,11]. In fact, it is known that even in a uniform alloy,
random fluctuations of the local indium concentration lead
to statistical spread of the electronic states’s energies and
partial localization of the wave functions, when calculated
with atomistic models like tight binding [11–13].
To quantitatively assess the effect of alloy fluctuations on

the maximum LED efficiency, we calculated the sponta-
neous emission properties of c-plane InGaN=GaN single-
quantum-well (SQW) LEDs including an AlGaN electron
blocking layer (EBL) and with indium contents between
15% and 35% and extracted the radiative recombination

parameter B. This number has then been compared with
experimentally determined values based on the ABC model
[8,14], which describes the total recombination rate as
R ¼ Anþ Bn2 þ Cn3, where A is the defect related
Shockley-Read-Hall (SRH) recombination parameter, n is
the carrier density, and the parameter C is usually interpreted
as the Auger recombination coefficient. In this model,
the internal quantum efficiency (IQE) is given by the
ratio of radiative to total recombination, i.e., IQE ¼
Bn2=ðAnþ Bn2 þ Cn3Þ. To obtain B, we calculated the
confined electron and hole states and the corresponding
optical transitions’ momentum matrix elements (MME),
using an atomistic empirical tight-binding approach
[15,16] and assuming an operating point of the LED near
the maximum IQE. We performed the empirical tight-bind-
ing calculations using both a homogeneous effective
medium approximation (virtual crystal approximation) and
a random alloy approach in order to quantify the effect of
alloy fluctuations in the InGaN. For the construction of the
atomic structure, we assumed a uniform random alloy, since
recent experimental evidence suggests that InGaN layers of
good quality should not deviate much from the ideal uniform
case [17–19]. The random alloy calculations have been
performed on 30 random structures for each indium content.
The schematic device structure used for the simulations, a
typical band diagram and a random atomistic structure, are
shown in Fig. 2 for the case of 20% indium.
Figure 3(a) shows a scatter plot of the ground state MME

for zero transverse momentum (i.e., at the Γ point) for the
different random samples in comparison with the values
obtained in effective medium approximation. We observe a
linear correlation between ground state transition energy and
MME, and an increasing spectral spread, confirming earlier
results [10–13]. The MMEs obtained assuming an effective
medium are strictly higher than the random alloy values,
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FIG. 2. Schematic
structure of the simulated
devices. (a) Schematic
structure of the SQW
LEDs used in the simula-
tions. (b) Typical conduc-
tion and valence band
edge profile near the pre-
dicted maximum IQE
point (for 20% indium).
(c) Atomistic structure of
one randomalloysample.
The red dots are the in-
dium atoms.
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indicating that simulations based on this assumption tend to
overestimate spontaneous emission strength. The scattering
of the MME can be attributed to variations in wave function
overlap in the quantumwell plane due to indium fluctuations
[10], as shown in Fig. 3(b), where the ground state electron
and hole wave functions are shown for the 30% indium QW
having the smallest and largest MMEs, respectively. The
strong spread in the values of the MME is due to the fact that
the lateral fluctuations of the electron and hole wave
functions are largely independent, since they are subject
to alloy fluctuations on distant atomic planes due to spatial
separation along the crystal’s c axis.
For a direct comparison with experimental data, we

estimated the radiative recombination coefficient B from
the simulation results. For this, we calculated eight electron
and eight hole states in four points of the reduced Brillouin
zone and extracted the radiative recombination rates and
carrier densities. From the statistical ensembles for each
indium content, we calculated the mean spontaneous
recombination rate R̄sp ¼ 1=N

P
iRsp;i and similarly the

mean electron and hole densities n̄ and p̄, where Rsp;i are
the spontaneous recombination rates for each random
sample calculated by Fermi’s golden rule [20] and N is
the ensemble size. Then, we extracted an effective radiative
recombination parameter Beff defined such that R̄sp ¼
Beff n̄ p̄. This is based on the assumption that the macro-
scopically observed recombination rates and carrier den-
sities are the spatial mean values.
Based on the ABC model and using the experimentally

extracted recombination coefficients, we can estimate the
effect of random alloy fluctuations on the maximum IQE
that can be expected from a c-plane InGaN=GaN SQW
LED and, in particular, its wavelength dependence. In the
ABC model, the maximum IQE is given by

IQEmax ¼ B=ðBþ 2
ffiffiffiffiffiffiffi
AC

p
Þ: ð1Þ

Since in this work we are mainly interested in the effect of
the wavelength dependence of B, we assumed wavelength
independent A and C parameters, taking a SRH recombi-
nation coefficient A ¼ 7 × 105 s−1 and the approximately
constant Auger coefficientC ¼ 10−31 cm6 s−1 from Ref. [8],
and calculated IQEmax based on (1) at different wavelengths
using both the theoretical and the experimental B parameters.
This allows us to compare the theoretical and measured
wavelength dependence of the maximum IQE under the best-
case assumption of constant nonradiative recombination. For
a quantitative comparison, we scale the simulated radiative
recombination parameters by a wavelength independent
constant such that at low wavelengths the predicted IQE
corresponds to the measured one (see the Supplemental
Material Ref. [21] for a discussion of the absolute values of
B). Figure 4(a) shows the calculated IQE as a function of
current density. It can be seen that uniform random alloy
fluctuations lead to an additional progressive reduction of the
IQE of up to roughly 0.1 with respect to the prediction based
on an effective medium approximation. The trend with
wavelength of the peak IQE predicted by the random alloy
calculation is in good agreement with the experimental data,
as shown in Fig. 4(b). We note that assuming some
nonuniformity in the indium distribution does not signifi-
cantly change the calculated B, whereas it substantially
broadens the predicted emission spectra (see the
Supplemental Material). Therefore, uniform random alloy
fluctuations can be identified to give an important contri-
bution to the green gap, and our results allow us to quantify
this contribution to account for up to 30% in the green
spectral region. Figure 4 also shows that the combination of
nonradiative recombination, dependency of optical strength
on emission energy, QCSE due to the internal field, and
finally alloy fluctuations may comprehensively explain the
origins of the green gap in nitride LEDs.
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FIG. 3. Ground state momentum matrix elements and wave functions. (a) Ground state transition matrix elements in atomic units
calculated at zero in-plane momentum (Γ point) using random alloy and effective medium approach, respectively. (b) Ground state
electron (green) and hole (yellow) wave functions for the 30% In QW with the smallest and largest momentum matrix elements.
The isosurfaces containing 10% of the total ground state density are shown. The red dots are the indium atoms.
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In summary, based on atomistic simulations of c-plane
InGaN=GaN SQW LEDs including uniform random alloy
fluctuations, we predicted the radiative recombination
parameter B for different mean indium contents. We have
shown that the wavelength dependence of B is compatible
with experimental findings and that simulation approaches
based on homogeneous effective media approximations,
typically used for device simulations, overestimate B by
an amount proportional to the mean indium content in the
QW. Comparing the predicted maximum IQE with the one
obtained using measured values of B, assuming for the
nonradiative recombination parameters wavelength inde-
pendent values, leads to the conclusion that alloy fluctua-
tions give rise to an important material intrinsic
contribution to the green gap, which in the studied
structures can be as big as 30% of the total IQE drop at
green wavelengths. Since the strong scattering of the
momentum matrix elements is due to the internal field
induced uncorrelated lateral fluctuations of electron and
hole wave functions, it can be expected that in nonpolar
QWs, the effect of the random alloy fluctuations would be
considerably reduced due to the absence of QCSE.
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