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The (111) surface of SnTe hosts one isotropic Γ̄-centered and three degenerate anisotropic M̄-centered
Dirac surface states. We predict that a nematic phase with spontaneously broken C3 symmetry will occur in
the presence of a perpendicular magnetic field when the N ¼ 0 M̄ Landau levels are 1=3 or 2=3 filled. The
nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions that
favor a valley-polarized state and weaker intervalley scattering processes that increase in relative strength
with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the threefold M̄ Landau-
level degeneracy, yielding a ground state energy with 2π=3 periodicity as a function of Zeeman-field
orientation angle.
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Introduction.—Tin telluride (SnTe) is now attracting
great attention as the first topological insulator (TI)
protected purely by crystalline symmetry. Although its
electronic band structure has been understood [1] for
decades, the physical consequences of its band inversion
have only recently been fully appreciated [2]. SnTe has a
rocksalt crystal structure with two interpenetrating face-
centered cubic lattices, and bulk bands that are inverted at
the four Brillouin-zone boundary L points. Its mirror Chern
number becomes nontrivial in mirror-invariant planes that
each contain a pair of L points. Based on this property,
Dirac surface states on selected surfaces respecting mirror
symmetries were first predicted [2] and later observed
[3–5]. The (111) surface of SnTe [6–13] respects three
mirror symmetries, and each protects an anisotropic gapless
Dirac surface state at M̄ and a partner isotropic state at Γ̄ in
the surface Brillouin zone, as sketched in Fig. 1(a).
In crystalline topological insulators the top and bottom

surfaces of thin films can be electrically isolated [8] by
breaking mirror symmetries on the side surfaces while
leaving them time-reversal invariant. This behavior con-
trasts with the case of strong TI thin films, for which it is
impossible to study single surface electrical properties
because sidewalls can be gapped only by breaking time-
reversal symmetry and generating Hall currents [14]. The
(111) surface of SnTe therefore hosts a unique and
relatively unexplored isolated two-dimensional electron
gas (2DEG) system in which the interplay between
topological surface properties, valleytronics, and many-
body effects is likely to yield unexpected phenomena.
The integer quantum Hall (QH) effect is a hallmark of

any 2DEG system. When a 2DEG has Landau-level (LL)
degeneracies due to spin, valley, and/or layer degrees of
freedom [15–17], the interplay between Landau quantiza-
tion and electron-electron interactions often leads to ground

states in which symmetries associated with the aforemen-
tioned degrees of freedom are spontaneously broken.
Examples of broken symmetry states of this type, often
referred to as QH ferromagnets, arise in GaAs and AlAs
quantum wells [18,19], single- and multilayer graphene
sheets [20–23], and on the surfaces of silicon [24,25] and
bismuth [26,27]. In all instances of QH ferromagnetism
studied to date, however, the noninteracting LL degeneracy
N has always been even. Thus, one may wonder whether
QH ferromagnetism with odd N exists in some material,
and how in this case the ground state breaks Hamiltonian
symmetries.
Here, we show that the (111) surface of SnTe provides

a platform to explore SU(3) QH ferromagnetism. As
illustrated in Fig. 1, the four Dirac cones on the (111)

FIG. 1. (a) Typical equal-energy contours for gapless Dirac
states on the (111) surface of SnTe. The three mirror invariance
lines are indicated by dotted lines. (b),(c) Single-particle LL
structures of (a). The energy difference between Γ̄ and M̄ Dirac
points is 30 meV in (b) and −20 meV in (c). Brown and blue lines
represent the nondegenerate Γ̄ LLs and the threefold degenerate
M̄ LLs, respectively. The integer labels in (b) and (c) give LL
filling factors in spectral gaps.
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surface give rise to four LL sequences. The three M̄ LL
sequences are degenerate and related by a C3 rotational
symmetry. However, the Γ̄-M̄ LL energy difference is not
restricted by any symmetry and can be tuned [11]. Thus,
therewill be field-dependent LL crossings between different
groups of LLs. We focus here on the case in which the
N ¼ 0 triplet is at the Fermi energy,well separated fromall Γ̄
LLs, and 1=3 or 2=3 filled to yield an integer total filling
factor. This triplet has an exact SU(3) flavor symmetry in the
absence of interactions and Zeeman fields, which is a
consequence of the C3 symmetry of the crystal and is
analogous to the SU(3) flavor symmetry of the quark model
and the eightfold way. We find that when only the valley-
conserving Coulomb interactions are retained in the theory,
valley symmetry is spontaneously broken to create a nematic
state [28] in which only one valley is occupied. When the
weaker valley-exchange scattering processes are retained, a
broken translational symmetry state with coherence among
three valleys appears beyond a critical magnetic field
strength. An in-plane Zeeman field couples to the nematic
order parameter and influences the competition between
broken rotational and translational symmetry states.
Surface state LLs.—The SnTe (111) Dirac surface states

are described by the k · p Hamiltonians [8]

HΓ̄ ¼ ℏvðkxsy − kysxÞ;
HM̄λ

¼ ℏvxk
ðλÞ
x sy − vkðλÞy sx; ð1Þ

where v ¼ 4.40 × 105 m=s and vx ¼ 2.55 × 105 m=s [11]
are surface Fermi velocities, λ ¼ 1, 2, 3 labels the three
inequivalent M̄ valleys, and s is a surface Dirac pseudospin.
Microscopically, the pseudospins [8,29] are valley-
dependent linear combinations of spin and orbital operators
that transform like spin under time reversal, spatial inver-
sion, and mirror reflection. kðλÞx and kðλÞy are explicitly
defined in Fig. 1(a) for the M̄1 valley; local momentum-
space coordinates in other valleys are obtained by appro-
priate C3 rotations.
In the presence of a uniform perpendicular magnetic

field, the 2D kinetic momenta ℏk in Eq. (1) are replaced by
π ¼ ℏkþ eA, where A ¼ ð0;−B⊥xÞ. The Γ̄ LL energies
are EN;�ðΓ̄Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏv2NeB⊥

p
, reminiscent of the mass-

less Dirac fermion LLs in graphene. Because the M̄ surface
states have anisotropic dispersions with valley-dependent
orientations, we define the valley-dependent raising oper-
ators a†λ ¼ ðl= ffiffiffi

2
p

ℏÞðαλπx − iβλπyÞ, where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB⊥

p
is the magnetic length, αλ ¼ η cos θλ þ iη−1 sin θλ, βλ ¼
η−1 cos θλ þ iη sin θλ, η ¼

ffiffiffiffiffiffiffiffiffiffi
vx=v

p
, and θλ ¼ 2ðλ − 1Þπ=3.

With these definitions,

HM̄λ
¼

ffiffiffiffiffiffiffiffiffiffi
2vvx

p
ℏ

l

�
0 −ia†λ
iaλ 0

�
; ð2Þ

so that the M̄ LL energies and wave functions are
EN;�ðM̄λÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ℏvxvNeB⊥
p

, and

ψ0λ ¼
�
ϕ0λ

0

�
;

ψN>0;λ;� ¼ 1ffiffiffi
2

p
� ϕNλ

� α�λ
jαλjϕN−1;λ

�
; ð3Þ

where

ϕNλ ¼ A−1
Nλe

−αλβ�λξ
2
λ=2HNðξλÞ: ð4Þ

Here, ANλ ¼ ð2NN!
ffiffiffi
π

p jαλjlÞ1=2 is a normalization factor,
ξλ ¼ ðx − kyl2Þ=ðjαλjlÞ, and HNðξÞ is the Hermite poly-
nomial. Also, note that aϕN ¼ −iα�=jαj ffiffiffiffi

N
p

ϕN−1 and
aϕ0 ¼ 0. In Fig. 1 we plot LL spectra as a function of
B⊥ for cases with the Γ̄ Dirac point above and below the M̄
Dirac points. All of the Γ̄ LLs are nondegenerate, whereas
all of the M̄ LLs are threefold degenerate because of the C3
symmetry.
QH ferromagnetism of N ¼ 0 triplet.—We focus here on

the case in which the N ¼ 0 LL triplet is 1=3 or 2=3 filled,
and we ask whether Hamiltonian symmetries are sponta-
neously broken and whether broken symmetries give rise to
charged excitation gaps which would yield an integer QH
effect. Because Coulomb interaction matrix elements are
sensitive to the valley-dependent orientations of the aniso-
tropic cyclotron orbits, the Hamiltonian is not invariant
under rotations in valley space. However, the small size of
the momentum-space cyclotron orbits relative to their
separation implies that the number of electrons in each
pocket is conserved; the only allowed large-momentum
transfer processes simply exchange electrons between
valleys. Broken symmetry ground states are either Ising-
like states in which the three symmetry equivalent valleys
are occupied by different numbers of electrons, or XY-like
states in which coherence is spontaneously established
among the valleys. The Ising-like state is a nematic [28],
which lowers rotational symmetry, while theXY-like state is
a commensurate charge-density-wave statewhich breaks the
crystal translational symmetry. Interesting new physics is
most likely to be experimentally accessible when theN ¼ 0
triplet is partially filled because of the large gap separating
N ¼ 0 andN ≠ 0 LLs. After projecting to theN ¼ 0 triplet,
states at 1=3 and 2=3 fillings are related by particle-hole
symmetry within the triplet, allowing us to focus on the 1=3
case. We neglect the possibility of an accidental degeneracy
between the N ¼ 0 M̄ triplet and the Γ̄ LL.
We employ the unrestricted Hartree-Fock (HF) approxi-

mation [30] at the integer total filling factors of interest, and
we minimize the energy of single Slater determinant trial
wave functions by solving self-consistent field equations
with 3 × 3 mean-field Hamiltonians of the form
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HHF
λσ ¼ E0δλσ þ Yλσ

0 Δσλð1 − δλσÞ
− Xλσ

0 Δσλ −
X
τ≠λ

Zλτ
0 Δττδλσ; ð5Þ

where E0 is the single-particle LL energy and Δσλ ¼ hc†σcλi
is the triplet density matrix. Xλσ

0 , Yλσ
0 , and Zλτ

0 are,
respectively, intravalley exchange, intervalley Hartree,
and intervalley exchange integrals. We use an envelope-
function approximation for valley-conserving scattering
processes, which are enhanced by the long-range tail of
the Coulomb interactions and are therefore dominant, and
we approximate intervalley processes using a phenomeno-
logical interaction constant U ∼ 2πe2=ϵK, where K is a
primitive reciprocal lattice vector. It follows that the Hartree
integral is Yλσ

0 ¼ ð2πl2Þ−1UFλσ
00ð0ÞFσλ

00ð0Þ, and that the
exchange integrals are

Xλσ
0 ¼

Z
d2k
ð2πÞ2

2πe2

ϵk
Fλλ
00ðkÞFσσ

00ð−kÞeikxkyl
2Wλσ

X ; ð6Þ

Zλσ
0 ¼ U

Z
d2k
ð2πÞ2 F

λσ
00ðkÞFσλ

00ð−kÞeikxkyl
2Wλσ

Z ; ð7Þ

where ϵ ¼ ðϵSnTe þ 1Þ=2 ∼ 20 [31] is the effective dielec-
tric constant and Fλσ

00ðkÞ is a form factor that accounts for
the system’s valley-dependent cyclotron-orbit shape:

Fλσ
00ðkÞ ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijαλ∥ασjðγλ þ γ�σÞ

p exp

�ðk2x þ γλγ
�
σk2yÞl2

−2ðγλ þ γ�σÞ
�
: ð8Þ

In the above integrals,Wλσ
X ¼ 1 − wλλ − wσσ andWλσ

Z ¼
1 − wλσ − wσλ, with wλσ ¼ γ�σ=ðγλ þ γ�σÞ and γλ ¼ βλ=αλ. If
the surface states were isotropic (i.e., v ¼ vx and γλ ¼ 1),
Fλσ
00ðkÞ would reduce to the circular cyclotron-orbit form

factor expð−k2l2=4Þ [30]. The corrections in Eq. (8)
account for the anisotropy of the triplet cyclotron orbits,
and for the 2π=3 differences in anisotropy orientation
illustrated in Fig. 1, which play an essential role in the
interaction physics. Because of the C3 symmetry, the
intravalley exchange integral matrix Xλσ

0 only has two
inequivalent elements, stronger exchange integrals for
electrons in the same valley (XS

0) on its diagonal and
weaker exchange integrals for electrons in different valleys
(XD

0 ) for its off-diagonal elements. Because we take the
valley-exchange scattering to be short ranged, the inter-
valley integrals have only off-diagonal matrix elements, all
of which have the same value (Y0 and Z0).
The broken symmetry ground state minimizes the total

energy with respect to the five parameters that characterize
the valley spinor, ðr1eiφ1 ; r2eiφ2 ; r3ÞT. Up to a spinor-
independent constant, the energy per electron is

E ¼ 2½ðXS
0 − XD

0 Þ − ðZ0 − Y0Þ�ðr21r22 þ r22r
2
3 þ r23r

2
1Þ: ð9Þ

The energy of the 1=3-filling ground state is independent of
φ1 and φ2 because of separate particle number conservation
in each valley. The spinor-dependent factor in Eq. (9)
reaches its minimum value 0 when the spinor is a single-
valley state ðr1; r2; r3Þ ¼ ð1; 0; 0Þ, (0,1,0), or (0,0,1) and its
maximum value 1=3 when the ground state is an equal-
weight three-valley state, ðr1; r2; r3Þ ¼ ð1; 1; 1Þ= ffiffiffi

3
p

.
Exchange energies are always stronger between orbitals

that are more similar. Accordingly, the exchange integrals
between electrons in the same valley are stronger than those
between electrons in different valleys (XS

0 > XD
0 > 0)

because of the difference in cyclotron-orbit orientations.
It follows that the ground state is completely valley
polarized unless valley-exchange interactions plays a role.
LL interaction physics in SnTe surface 2DEGs therefore
contrasts strongly with the case of graphene 2DEGs, which
has identical isotropic Dirac cones in two different valleys,
implying that XS

0 ¼ XD
0 . Broken valley symmetry states at

ν ¼ �1 in graphene [32–35] therefore have Heisenberg
character when valley-exchange processes are neglected.
For the relatively modest anisotropy parameter η ∼ 0.75

of SnTe, we find that the difference between the same-
valley and different-valley exchange energies is small,
XS
0 − XD

0 ¼ 0.0541e2=ðϵlÞ ∼ ffiffiffiffiffiffi
B⊥

p
. The valley-exchange

scattering processes are short ranged and momentum
independent, under which Z0 − Y0 is positive and scales
as U=l2 ∼ B⊥. This allows the weak valley-exchange
scattering to play a role at stronger fields, favoring a
ground state which has coherence between all three valleys
and is therefore a charge-density-wave state with broken
translational symmetry. For U¼ 2πe2=ϵK¼ 0.85 eV nm2,
a first-order quantum phase transition between nematic
valley-polarized and valley-coherent charge-density-wave
states occurs at Bc⊥ ≃ 11 T. This behavior contrasts with
graphene [32–35] and monolayer MoS2 [36], where there is
no such competition, and the same mechanism induces a
charge-density-wave ground state at all field strengths at
filling factors ν ¼ �1.
Zeeman-field effects.—We have so far neglected Zeeman

coupling, which greatly enriches the interaction induced
integer QH effect of SnTe. We write the total magnetic field
as ðB∥ cosϕ; B∥ sinϕ; B⊥Þ, using the coordinate frame
defined in Fig. 1(a) for the crucial in-plane-field orientation
ϕ. For a general ϕ the Zeeman field breaks mirror
symmetries and couples to the order parameter by produc-
ing valley-dependent single-particle energies [8,37], i.e.,
E0 → E0 þmλ in Eq. (5), with

mλ ¼
1

2
αgμB

�
2

ffiffiffi
2

p

3
B∥ cosðϕ − θλÞ þ

1

3
B⊥

�
; ð10Þ

where g is an electron g factor, μB is the Bohr magneton,
and α ¼ η2=3 is the real spin weight of the surface
pseudospin [8,37]. The perpendicular field B⊥ does not
break the C3 symmetry and contributes only an irrelevant
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[38] valley-independent energy shift of theN ¼ 0 triplet. In
contrast, the in-plane field B∥ breaks C3 symmetry and lifts
the N ¼ 0 triplet degeneracy. It follows that in-plane fields
can yield an integer QH effect at the 1=3 and 2=3 fillings of
the N ¼ 0 triplet even in the absence of interactions, as
illustrated in Fig. 2(a). When B̂∥ is parallel (antiparallel) to
Γ̄-M̄, the triplet level degeneracy is reduced to a twofold
degeneracy at 1=3 (2=3) filling. When B̂∥ is (anti-)parallel
to Γ̄-K̄, the single-particle gaps at the 1=3 and 2=3 fillings
are nonzero and identical.
Valley-dependent Zeeman coupling competes with elec-

tron-electron interactions, and it greatly enriches the phase
diagram by adding δE →

P
λmλr2λ to Eq. (9). The phase

diagram at ϵgB∥ ¼ 300 T is illustrated in Fig. 2(b). For
B⊥ < Bc⊥ ¼ ð2.81 eV nm2=UÞ2, interactions prefer a val-
ley-polarized state and ϕ simply selects which valley is
occupied. First-order phase transitions occur at ϕ ¼ θλ.
When Zeeman coupling to a parallel field is included, the
abrupt transition from valley-polarized to three-valley-
coherent states is interrupted by a region in which
ϕ-dependent two-valley-coherent states are stable. The
stability range of the two-valley-coherent state is widest
when ϕ ¼ θλ. Finally, when B⊥ is further increased, three-
valley-coherent states finally emerge, but with ϕ-dependent
and unequal valley populations. Valley coherence can
therefore be modified and continuously tuned by the
in-plane Zeeman field.
The shape of the phase diagram in Fig. 2(b) is only

weakly dependent on the value of ϵgB∥. The three
first-order transition lines and Bc⊥ are independent of

changes in ϵgB∥. A larger value of ϵgB∥ expands the areas
with two-valley-coherent states to larger B⊥’s. Stronger
short-range interactions shift Bc⊥ to smaller values because
intervalley interactions increase in importance. On the other
hand, larger surface state anisotropy would increase the
critical perpendicular field Bc⊥.
Discussion.—We have shown that because of valley-

dependent anisotropic cyclotron orbits, intravalley elec-
tron-electron interactions in SnTe can reduce rotational
symmetries and lift the threefold degeneracy of the M̄
valley N ¼ 0 LLs. The physics which drives this broken
symmetry is similar to that responsible for valley-polarized
nematic states in parabolic spinful band systems with an
even number of valleys [39,40]. The triplet case discussed
here is distinguished by its SU(3) order parameter space,
and by the way Zeeman interactions with parallel fields
couple to the order parameter. Zeeman interactions play a
key role because parallel fields break the mirror and C3
symmetries that protect and relate the three M̄ valley
surface Dirac states. We also predict that intervalley
interactions will become important at sufficiently strong
fields and drive a transition from a valley-polarized nematic
state to a commensurate charge-density-wave state with
intervalley coherence.
Although we use a mean-field theory, many of our

predictions are exact when Landau-level mixing is
neglected [41]. Specifically, the phase boundaries between
the valley-polarized states (favored by in-plane Zeeman
fields) and those between the valley-polarized and two-
valley-coherent states are likely to be exact [41] because the
states whose energies we are comparing are the only states
in the relevant Hilbert space with the same quantum
numbers. However, the phase boundaries between the
two-valley-coherent states, which are not exact single-
Slater determinant states, and the three-valley-coherent
region are likely to be modified by quantum fluctuations.
The same physics also occurs in PbxSn1−xSe, which may

have higher mobilities than SnTe [4,42]. The first step
experimentally would be to verify our predicted LL
structure using field-angle dependent magnetoresistance
or magnetic torque magnetometry [26,27]. The energies of
the Γ̄ and M̄ valley LLs are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nv2B⊥

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NvvxB⊥

p
,

respectively. Their crossings, illustrated in Fig. 1, should
lead to pronounced peaks in longitudinal magnetoresist-
ance. Note that the LL crossing fields may be controllable
by varying the surface potential [11], which tunes the
energy difference between the Γ̄ and M̄ Dirac points. An in-
plane Zeeman field splits the SU(3)-invariant triplets, with
2π=3 periodicity as a function of Zeeman-field orientation.
Since Shubnikov–de Haas oscillations have recently been
observed on the (001) surface of PbxSn1−xSe [42], we
expect future progress to be rapid. The phase diagram
Fig. 2(b) is expected to be observable only in low-disorder
samples since the transport activation gaps associated
with broken symmetry states are of the order of

FIG. 2. (a) In-plane Zeeman energies mλ in units offfiffiffi
2

p
η2gμBB∥=9 as a function of B∥ orientation. (b) Phase diagram

for the state at 1=3 filling of the N ¼ 0 LL triplet for ϵgB∥ ¼
300 T and U ¼ 0.85 eV nm2. The red dot denotes the critical
field Bc⊥ at which a first-order transition occurs between a valley-
polarized and a three-valley symmetric state occurs at B∥ ¼ 0.
The solid blue lines are first-order phase boundaries between
valley-polarized states, and the dashed red lines are continuous
transition boundaries between states with coherence between
different numbers of valleys. The phases labeled by M̄i, M̄ij, and
M̄123 have a full LL spinor that is a coherent superposition of
components involving one, two, and three valleys, respectively.
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e2=ðϵlÞ ∼ 56
ffiffiffiffiffiffiffiffiffiffiffiffi
B⊥½T�

p
=ϵmeV. The collective modes [43] of

valley-coherent states are expected to be gapless, while
those of valley-polarized states are expected to be gapped.
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