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Higher order time correlators of spin fluctuations reveal considerable information about spin
interactions. We argue that in a broad class of spin systems, one can justify a phenomenological approach
to explore such correlators. We predict that the third and fourth order spin cumulants are described by a
universal function that can be parametrized by a small set of parameters. We show that the fluctuation
theorem constrains this function so that such correlators are fully determined by lowest nonlinear
corrections to the free energy and the mean and variance of microscopic spin currents. We also provide an
example of microscopic calculations for conduction electrons.
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Spin noise spectroscopy (SNS) [1,2] is a quickly
evolving interdisciplinary field of research. It explores spin
interactions by tracing dynamics of spontaneous spin
fluctuations at or near the thermodynamic equilibrium
without the need to intentionally polarize spins. The
SNS has been successfully applied to semiconductors
[3–5], quantum dots [6–8], and hot and ultracold atomic
gases [2,9,10].
So far, the SNS has been focused on studies of the

second order spin correlator hSzðtÞSzð0Þi of a local time-
dependent spin polarization SzðtÞ, or rather on its Fourier
transform called the spin noise power spectrum:

C2ðωÞ≡ hjSzðωÞj2i; ð1Þ

where SzðωÞ ¼ ð1= ffiffiffiffiffiffi
Tm

p Þ R Tm
0 dtSzðtÞeiωt and averaging is

over many repeated time intervals of duration Tm. The
information content of the correlator (1) is strongly
restricted. Hence, one of the promising future directions
to extend the SNS is to measure higher order spin
correlators [11–14], the most accessible of which are the
third and fourth order ones:

C3 ≡ hSzðω1ÞSzðω2ÞSzð−ω1 − ω2Þi; ð2Þ

C4 ≡ hjSzðω1Þj2jSzðω2Þj2i − hjSzðω1Þj2ihjSzðω2Þj2i; ð3Þ

which depend on two frequencies ω1 and ω2.
Unlike the noise power (1) that describes the spectral

frequency weights, the bispectra (2) and (3) tell how
different frequencies “talk” to each other. These correlators
are sensitive to many-body interactions [15] and quantum
effects [16], suggesting that their studies by the SNS can
reveal essentially new information about correlated spin
systems. As the noise of a single spin in a quantum dot [17]
and the noise of only a few hundreds of spins of
conduction electrons in a 2D electron gas [18] have already

been studied experimentally, the goal to obtain the third
and fourth order spin correlators experimentally becomes
achievable [16]. However, very little is known about
properties of C3 and C4 in basic systems studied by the
SNS, such as conduction electrons and atomic gases, e.g.,
about how (2) and (3) are influenced by the Pauli principle,
scatterings, spin-orbit coupling, and external magnetic
field. There have been no quantum mechanically justified
studies of such correlators in interacting electronic
systems.
An important observation made throughout all known

SNS applications is that the spin noise often shows well
recognized patterns. For example, the noise power spec-
trum often consists of one or several peaks having the
Lorentzian shape. The position and the width of such a peak
determine useful parameters: the g factor of the spin
resonance and its lifetime [2]. This universality is not a
coincidence, and it is well understood: the Lorentzian shape
of a peak indicates exponential relaxation in time that
happens due to fast uncorrelated interactions. For example,
conduction electrons that experience fast fluctuations of the
spin-orbit field usually demonstrate a Lorentzian shape of
the spin noise power spectrum [19]. In fact, the commonly
used Bloch equation and various relaxation time approx-
imations are justified by exactly this type of universality.
In this Letter, we argue that a similar universality exists

on the level of higher order spin correlators, namely, under
the conditions that the noise power spectrum is Lorentzian
and the third and fourth spin correlators can also be
parametrized by a small set of parameters with a clear
physical meaning. In addition, we show that, as a conse-
quence of the fluctuation theorem, such parameters are not
independent when the system is probed at or near the
thermodynamic equilibrium.
A Lorentzian peak in the noise power spectrum indicates

that the dynamics of the spin fluctuation follows the Bloch-
Langevin equation
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_S ¼ B × S − γSþ ηðtÞ; ð4Þ

where γ is the relaxation rate and η is the noise term

hηi ¼ 0; hηiðtÞηjðt0Þi ¼ 2Dijδðt − t0Þ; i; j ¼ x; y; z:

ð5Þ

For simplicity, we assumed an isotropic relaxation rate, and
we absorbed the g factor in the definition of the magnetic
field B. Although phenomenological, Eq. (4) has been
highly successful to describe diverse spin systems, includ-
ing conduction electrons, nuclear spins, warm atomic
gases, and hole spins of quantum dots [2,3,7,9]. For small
spontaneous fluctuations in a region with N ≫ 1 spins, we
can disregard the dependence of the relaxation rate γ on S.
The probability of a fluctuation S ≠ 0 at the thermody-
namic equilibrium is determined by the free energy FðSÞ of
spins in the region at known polarization S:

PðSÞ ∼ e−βFðSÞ; F ¼ a0
2
S2 þ b0

4
S4 þ � � � ; ð6Þ

where β ¼ 1=kBT. Hence, Dij are not always independent
parameters. In order to reproduce the Gaussian part in (6),
one should set Dij ¼ D0δij, where D0 ¼ γ=ðβa0Þ.
We will assume that the magnetic field is applied along

the y axis, which is transverse to the measurement z axis.
The noise power spectrum produced by Eq. (4) is then well
known. It consists of two Lorentzian peaks [19]:

C2ðωÞ ¼
X
s¼�

D0

ðω − sωLÞ2 þ γ2
; ωL ≡ jBj: ð7Þ

Equation (4) with constant parameters γ and D0 predicts
zero values for all higher than second order spin cumulants.
Our first observation is that it is straightforward to

generalize Eq. (4) to include nonlinear effects.
Correlators (2) and (3) must follow then from higher order
corrections to parameters that, for an isotropic system, read

γ ¼ γðSÞ ¼ γ0 þ γ2S2 þOðS4Þ; ð8Þ

Dij ¼ ðD0 þD1S2Þδij þD2ðSiSj − S2δijÞ þOðS4Þ: ð9Þ

Here, D1 corresponds to renormalization of the noise part
related to dissipative spin relaxation, and the term with D2

describes angular diffusion of a spin fluctuation without
relaxation of its absolute value [20].
Microscopic calculations of the leading corrections to

the nonlinear relaxation rate γ and the second order noise
correlator Dij can be done within the approach developed
in Ref. [15]. The biggest complication, however, is that the
knowledge of γðSÞ and DijðSÞ is insufficient to determine
C3 and C4 because the noise term η in (4) can no longer be
considered Gaussian, while a microscopic quantum theory

to obtain non-Gaussian statistics of η is generally missing.
Below, we show, and this will be one of our key results, that
this problem can be avoided for fluctuations at the
thermodynamic equilibrium because non-Gaussian corre-
lations of η are then uniquely constrained; i.e., they can be
derived without additional microscopic calculations.
To address this problem, we note that, for a mesoscopic

system, one can choose the time step δt such that the
number of spin flips in the system is large but still much
smaller than the typical size of the spin fluctuation S. Let
P½δSjS� be the probability of observing the change of the
spin polarization by the amount δS during δt given that
initially the spin fluctuation size is S. The law of large
numbers guarantees that cumulants of δS grow linearly
with δt as far as hδSi ≪ S [21]. This fact can be expressed
by introducing the cumulant generating function Hðχ ;SÞ:

P½δSjS� ¼
Z

dχeiχ ·δSeδtHðχ ;SÞ: ð10Þ

Next, we note that fluctuations near the thermodynamic
equilibrium should satisfy the detailed balance constraints,
so that probabilities of spin polarization changes by δS and
−δS are related by [22,23]

P½δSjS�
~P½−δSjSþ δS� ¼ eβ½FðSÞ−FðSþδSÞ� ≈ e−βδS·μ;

μ ¼ ∂F
∂S ; ð11Þ

where tilde sign in ~P½−δSjSþ δS� means the probability at
time-reversed values of model parameters. In combination
with (10), Eq. (11) leads to the fluctuation relation [which is
a special case of Eq. (3.2.51) in Ref. [24] ]

Hðχ ;−S;−BÞ ¼ Hðχ þ iβμ;S;BÞ; ð12Þ

whereH is defined in (10). Next, we recall that ifHðχ ;SÞ is
known, the arbitrary spin correlator can be derived by the
method of the stochastic path integral [15,21]. The latter is
the sum Z, over all possible stochastic trajectories, dis-
cretized in time steps δt, of random variables δSðtÞ and
SðtÞ weighted by probabilities (10) and delta functions
δð _S − δS=δtÞ at each elementary time interval. Integrals
over δSðtÞ can be performed explicitly with an expense of
introducing a conjugated to SðtÞ variable χ ðtÞ. Following
Refs. [15,21], we find

Z ¼
Z

DSðtÞ
Z

Dχ ðtÞe
R

dt½iχ _SþHðχ ;SÞ�: ð13Þ

In order to derive an nth order spin correlator in the N ≫ 1
limit, it is enough to keep only terms up to the nth power of
variables χ , S in Hðχ ;SÞ. Assuming an isotropic para-
magnetic system, the most general form of Hðχ ;SÞ up to
the fourth power of variables is
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H ¼ iγðSÞχ · Sþ iχ · ðS ×BÞ − D̂ðS; χ Þ
þ iD3χ 2ðS · χ Þ þD4χ 4; ð14Þ

where

D̂ðS; χ Þ ¼ D0χ 2 þ ðD1 −D2ÞS2χ 2 þD2ðS · χ Þ2: ð15Þ
Here, constants D0, D1, D2 have the same physical
meaning as in (9), and γðSÞ is given by the two first terms
in (8). Importantly, applying the symmetry (12) to (14), we
find the standard fluctuation-dissipation theorem prediction
D0 ¼ γ0=ðβa0Þ, as well as the additional constraints relat-
ing higher order coefficients:

D4 ¼
βb0D0 þ βa0D1 − γ2

β3a30
;

D3 ¼ −2βa0D4: ð16Þ

Equation (14) with constraints (16) are the central results of
this Letter. They show that the information about up to the
fourth order spin correlators is contained in a simple
function H that depends on a small set of parameters.
Moreover, note that terms of higher than the second power
of χ in (14) characterize higher order correlators of the
noise term η in (4). The fact that corresponding coefficients
D3 and D4 can be written in terms of coefficients at
nonlinear corrections to the second order correlators of η,
and the quartic correction to the free energy in (6)
considerably simplifies the goal of their microscopic
calculation.
Remaining parameters depend on microscopic spin

dynamics. Nevertheless, the universality that we found
allows us to look at possible patterns of third and fourth
correlators. They can be calculated by switching to the
frequency domain in the action of the path integral and
treating fourth order terms in (14) as a small perturbation:

C4ðω1;ω2Þ ¼ hjSzðω1Þj2jSzðω2Þj2R4i0; ð17Þ

where R4 ¼
R
dtH4 and H4 is the quartic part of the

Hamiltonian in Eq. (14), and h…i0 means that the average
is taken over the quadratic action in the path integral. After
applying the Wick’s rule, we find a relatively complex
expression that we provide in the Supplemental Material
[20]. In Fig. 1, we show examples of the obtained fourth
correlator shapes at different values of independent param-
eters, including the magnetic field.
Analogously, we can explore the form of the third order

correlator. It becomes nonzero at nonequilibrium condi-
tions, for example, when a finite spin density is induced in
conduction electors by a resonant optical pumping. We will
consider the limit of a weak intensity of the pumping beam
so that spin generation happens in uncorrelated events that
have a Poisson distribution, which contributes to the
Hamiltonian in the action of Eq. (13) with a term [21]

Hp ¼ kpðe−iχz − 1Þ; ð18Þ

where kp is the generation rate of spin polarization by an
optical beam. Since the third order correlator is 0 at kp ¼ 0,
and since we are interested in the linear, in kp, response
contribution, we can disregard the effect of small renorm-
alization of all other terms in the action of the path integral
(13) on C3. The saddle point equations with the total
Hamiltonian HT ¼ HþHp read

δHT=δχi ¼ 0 and δHT=δSi ¼ 0; with i ¼ x; z:

They have a solution χ̄i ¼ 0 and

S̄z ¼
kpγ0

γ20 þ ω2
L
; S̄x ¼

kpωL

γ20 þ ω2
L
: ð19Þ

By expanding the action in powers of small fluctuations
δS and χ from the steady state, the third order in δS and χ
part of the Hamiltonian in the path integral reads

HT;3 ¼ −
1

2
kpχ2zδSz − 2ðD1 −D2ÞðS̄δSÞχ 2

− 2D2ðS̄ · χ Þðχ · δSÞ þ iD3ðS̄ · χ Þχ 2
þ iγ2½ðS̄ · χ ÞðδSÞ2 þ 2ðδS · S̄Þðχ · SÞ�: ð20Þ

We find that corresponding correlator C3 is generally
complex valued. In Figs. 2(a) and 2(b), we plot, respec-
tively, the real and imaginary parts of a typical pattern
of C3ðω1;ω2Þ.

FIG. 1. Fourth order cumulants in the presence of a magnetic
field for different values of parameters: (a) D1 ¼ 1, D2 ¼ 0,
ωL ¼ 0.0. (b) D1 ¼ 1, D2 ¼ 0, ωL ¼ 0.1. (c) D1 ¼ 0, D2 ¼ 1,
ωL ¼ 0. (d) D1 ¼ 0, D2 ¼ 1, ωL ¼ 0.1. Other parameters are
γ0 ¼ 0.1, a0 ¼ 1, b0 ¼ 0, β ¼ 1, and γ2 ¼ 0.
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As a demonstration of a microscopic estimate of inde-
pendent parameters, we consider a model of conduction
electrons, for which spin relaxation and fluctuations are
caused by scatterings on weak randomly distributed static
magnetic impurities. We assume that energy-momentum
degrees of freedom of electrons equilibrate to the Fermi-
Dirac distribution at the ambient temperature very quickly,
while the spin degrees of freedom equilibrate at a much
slower rate. For an open isotropic region around the studied
spot, we can introduce a local instantaneous vector chemi-
cal potential μðtÞ to describe the single particle density
matrix of electrons:

ρ̂ðϵÞ ¼ 1

1þ eβðϵ−μ·σ̂=2Þ
; ð21Þ

where σ̂ is the vector made of Pauli matrices acting in the
spin space. The potential μ is a slow variable that changes at
the spin relaxation time scale. We assume that the obser-
vation region is much smaller than the spin diffusion
length. The average spin polarization density is then given
by SðtÞ ¼ ds

R
dϵTr½σ̂ ρ̂�=2 ¼ dsμðtÞ=2, where ds is the

density of states per unit energy. Fast transitions of
electronic spins through the observation region and quan-
tum measurement effects will induce fast noise ξðtÞ in the
measured Faraday rotation angle θF of the probe beam.
However, averaging the signal over an interval δt that is
smaller but comparable to spin relaxation time, one would
find that hθFi ∼ Szδt; i.e., the information about Sz accu-
mulates with time and dominates the measured correlations
at spin relaxation time scale, while ξðtÞ contributes to the
background noise and the high frequency tail of the
spectrum, which we will not study here.
For a fermionic system with the density matrix (20), the

free energy is a quadratic function of a parameter S:
F ¼ R

μdS ¼ S2=ðdsÞ. Let Ψ̂≡ ðâ↑; â↓Þ, where â↑;↓ are
the annihilation operators of electrons in two degenerate
eigenstates of the Hamiltonian that includes nonmagnetic
disorder. Weak interaction with magnetic impurities cou-
ples these states so that, in the Dirac picture, annihilation
operators evolve with time:

Ψ̂ðδtÞ ¼ ðcos θ þ im · σ̂ sin θÞΨ̂ð0Þ; ð22Þ

where θ is a random parameter of the evolution matrix, such
that averaging over all scattering channels hθ2i ∼ δt and,
for each scattering channel, m is a randomly directed unit
vector. Let ŝ ¼ 1

2
Ψ̂†σ̂ Ψ̂ be the spin operator in the subspace

of the two states. As we showed before, to determine
parameters of the path integral action, we need to know
only up to second order correlators of the spin change
during a small time interval δt, which can be obtained by a
simplified procedure, known to work only for such lowest
order correlators [24]. Namely, we introduce the operator of
the change of the spin: δŝ≡ ŝðδtÞ − ŝð0Þ. Explicitly,

δŝ ¼ 1

2
sin2θ½Ψ†ðm · σ̂Þσ̂ðm · σ̂ÞΨ −Ψ†σ̂Ψ�

þ i
2
sin θ cos θ½Ψ†σ̂ðm · σ̂ÞΨ −Ψ†ðm · σ̂Þσ̂Ψ�:

Then, the average change of the spin density and its
variance are given by hδSi¼ds

R
dϵTr½ρ̂δŝ� and hδSαδSβi ¼

ds
R
dϵTr½ρ̂fδŝα; δŝβg=2�, where curly brackets denote the

anticommutator. Using the density matrix (21) in the
secondary quantized form, we obtain spin fluctuations
due to scatterings between particular degenerate spin
states. Finally, we assume that all scattering channels are
independent during time δt, average over parameters θ
and m, and integrate over ϵ. We find hδSi=δt≡ −γ0S ¼
− 4

3
Shθ2i=δt, and

hδSαδSβi ¼ δαβ
4

3
hθ2i

�
ds
β
þ β

3ds
S2

�
:

Comparing with Eqs. (4) and (9), we identify

D0¼ γ0ds=ð2βÞ; D1¼ γ0β=ð6dsÞ; D2 ¼ 0: ð23Þ

In this case, the coefficient in the free energy a0 ¼ 2=ds.
Therefore, we recover the fluctuation-dissipation relation
D0 ¼ γ0=a0β. Using Eq. (16), and considering the fact that
b0 ¼ 0 and γ2 ¼ 0, we find

D4 ¼ dsγ0=ð24βÞ; D3 ¼ −γ0=6: ð24Þ

The resulting Hamiltonian in the path integral for this
model reads

H ¼ iγ0χ · Sþ iχ · ðS ×BÞ − γ0ds
2β

χ 2 −
γ0β

6ds
S2χ 2

− i
γ0
6
ðχ · SÞχ 2 þ dsγ0

24β
χ 4: ð25Þ

Thus, this model corresponds to the case with D2 ¼ 0,
which is illustrated in Figs. 1(a) and 1(b).

FIG. 2. The (a) real and (b) imaginary parts of the third order
cumulant in the regime of a continuous spin pumping along the z
axis with kp ¼ 0.3. Parameters are D1 ¼ D2 ¼ 1, γ0 ¼ 0.1,
ωL ¼ 1, a0 ¼ 1, b0 ¼ 0, β ¼ 1, and γ2 ¼ 0.
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One additional consequence of this result is the pre-
diction that the fourth correlator of a Fermi liquid scales
linearly with temperature. For example, the D1 term
contribution to the fourth cumulant, according to the

Wick’s theorem, is of the order of Cð1Þ
4 ∼D1hSχ i20×hSSi20 ∼

β×1×1=β2¼1=β, where we used the fact that, for the
second order correlators, the temperature dependence
scales as hSχ i0 ∼ β0 and hSSi0 ∼ β−1.
In conclusion, we developed a phenomenological

approach that extends the Bloch-Langevin equation for
spin dynamics to include the third and fourth order spin
correlations. This approach is justified by the law of large
numbers and the higher order fluctuation relations. Our
theory should be applicable practically to all spin systems,
near the thermodynamics equilibrium, that exhibit
Lorentzian peaks in the spin noise power spectrum.
Such cases are ubiquitous. Therefore, although the micro-
scopic theory of higher order spin correlations is at the early
stage of development, our results make a valuable insight
into the possible forms of such correlators and their
dependence on temperature and optical spin pumping.
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