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The critical point of a topological phase transition is described by a conformal field theory, where finite-
size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling
away from criticality and find a scaling function, which discriminates between phases with different
topological indices. This function appears to be universal for all five Altland-Zirnbauer symmetry classes
with nontrivial topology in one spatial dimension. We obtain an analytic form of the scaling function and
compare it with numerical results.
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Since the introduction of topological order in condensed
matter physics, the field of topological insulators has
received constantly growing attention [1–4]. Although
noninteracting topological phases were fully classified
[5–7] and a plethora of topological edge states character-
ized [2,4,8–11], little attention has been given so far to
finite-size effects around the topological transition. An
important question is whether finite-size scaling is capable
of distinguishing between topological indices and may be
used as an indicator of the topological nature of the
transition. One may also ask whether such scaling is
universal or specific to a particular symmetry class, e.g.,
sensitive to Z vs Z2 topological index.
In this Letter we discuss the finite-size scaling of the

ground state energy across topological phase transitions in
1þ1 dimensional models. The critical point in such models
is described by a conformal field theory [12] (CFT). The
finite-size N scaling of the ground state energy EðN; 0Þ for
an open system at criticality is known [13,14] to be

EðN; 0Þ ¼ Nϵ̄ð0Þ þ bð0Þ − c
N

π

24
þOðN−2Þ; ð1Þ

where ϵ̄ð0Þ is the average bulk energy per particle, bð0Þ the
size-independent boundary term and argument (0) specifies
the exact critical point. Here, length is measured in units of
lattice spacing and energy in units of the Fermi velocity
over the lattice spacing. The 1=N term appears to be
universal and depends only on c—the central charge of the
Virasoro algebra [12].
A relevant perturbation drives the system away from

criticality, creating a spectral gap 2m and a corresponding
correlation length ξ ¼ 1=m. Our main observation is that
the CFT expansion (1) may be generalized as

EðN;mÞ ¼ Nϵ̄ðmÞ þ bðmÞ − c
N
fðNmÞ þOðN−2Þ; ð2Þ

where in the double scaling limit [15]: N → ∞ and m → 0,
while w ¼ Nm ¼ N=ξ ¼ const, the function fðwÞ, Fig. 1,

FIG. 1. Numerical results for fðwÞ, wherew ¼ Nm andN ¼ 100
for 5 topologically nontrivial symmetry classes in one spatial
dimension. (a) The case for open boundary conditions which is
sensitive to topology, the solid line is the scaling function given by
Eq. (9). (b) In periodic boundary conditions the results are indepen-
dent of the topological index and the scaling function Eq. (10) is
symmetric. There is a difference between even [fðwÞ negative] and
odd [fðwÞ positive] numbers of unit cells N¼100, 101.

PRL 116, 026402 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

0031-9007=16=116(2)=026402(5) 026402-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.026402
http://dx.doi.org/10.1103/PhysRevLett.116.026402
http://dx.doi.org/10.1103/PhysRevLett.116.026402
http://dx.doi.org/10.1103/PhysRevLett.116.026402


is universal for all 5 Altland-Zirnbauer symmetry classes
with nontrivial topology in 1 spatial dimension (AIII, BDI,
DIII, D, CII) [5,6]. Hereafter we identify m > 0 with the
topological and m < 0 with nontopological, or lesser
topological index, side of the transition. Most notably,
the scaling function for open boundary conditions exhibits
markedly distinct behavior on the two sides of the topo-
logical transition, while for periodic boundary conditions it
is symmetric [16]. Curiously, a similar scaling function for
the entanglement entropy [17] appears to be symmetric
across the topological transition [18], and it is only the
N-independent boundary term that is sensitive to the
topological index.
One may worry that in the double scaling limit depend-

ence on m of the bulk and boundary terms should not be
kept. This is not quite so, because of their singular
dependence on the gap. As we explain below

ϵ̄ðmÞ ¼ ϵ̄ð0Þ − c
2π

½m2 þOðm4Þ� ln αjmj; ð3Þ

bðmÞ ¼ bð0Þ þ c
π
½mþOðm2Þ� ln αbjmj; ð4Þ

where α and αb are nonuniversal constants. As a result the
double scaling limit (2) for the energy may be equivalently
written as

EðN;wÞ ¼ Nϵ̄ð0Þ þ bð0Þ þ c logN
2πN

ð2w − w2Þ − c
N
f2ðwÞ;

ð5Þ

where f2ðwÞ ¼ fðwÞ þ ð1=2πÞð2w logαbjwj−w2 logαjwjÞ
incorporates nonuniversal terms ∼w and ∼w2. Since these
latter may be easily subtracted both numerically and
analytically, it is preferable to use the expansion (2) with
the fully universal function fðwÞ.
Universality of the scaling function.—Before discussing

analytic properties of the scaling function fðwÞ let us focus
on our numerical setup and demonstrate the universal
behavior for different symmetry classes. We consider
models for all five Altland-Zirnbauer symmetry classes
which are topologically nontrivial in one dimension [6]. To
extract the scaling function we use Eq. (2). EðN;mÞ is the
sum of all eigenvalues which are obtained by numerical
diagonalization. The average energy ϵ̄ is the integral over
the entire Brillouin zone of the dispersion relation for all
filled bands, which are calculated from the k-space repre-
sentation of the Hamiltonian. The boundary term may be
also calculated analytically (see below) or alternatively
approximated by bðmÞ ≈ EðN;mÞ − Nϵ̄ðmÞ for some large
N, say N ¼ 1000. We have checked that the two ways are
in excellent agreement.
In AIII symmetry class we use the standard

Su-Schrieffer-Heeger (SSH) tight-binding Hamiltonian
[19,20]:

HAIII ¼
XN
j¼1

t1c
†
A;jcB;j þ

XN−1

j¼1

t2c
†
B;jcA;jþ1 þ H:c: ð6Þ

Here we choose the gauge for the momentum to have the
gap closing at k ¼ 0, where the dispersion relation reads
εðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 − 2t1t2 cos k

p
. For t1 ≠ t2 neighboring

sites form dimers, where for t1 > t2 all sites are part of a
dimer, but for t1 < t2 the two sites at the ends of the chain
are unpaired (from now on m ¼ t2 − t1). Thus, there are
two distinct phases with topological index Z ¼ 0 or Z ¼ 1,
respectively. In the case of n similar parallel chains,
the topological index takes values Z ¼ f0; 1;…; ng.
Figure 2(c) shows results for the scaling function at
different system sizes, as well as three different transitions
(Z ¼ 0 → 1, 0 → 2, 1 → 2) in a system with two parallel
chains. The results scale with w as the only parameter, and
all transitions agree with the analytic result, Eqs. (2) and
(9). The other symmetry classes are discussed in the
Supplemental Material [21]. Here we only show numerical
results in Fig. 1, which confirm universality across all five
topological classes.
Analytic properties.—Universality of the fðwÞ function

is related to the fact that, similarly to the CFT result (1), it is
fully determined by the vicinity of the critical point.
One may thus approximate a near-critical system by the
Dirac Hamiltonian, e.g., in AIII symmetry class, H ¼
mσ1 þ i∂xσ2, where the Pauli matrices act in the space of
A=B sublattices, cf. Eq. (6). Assuming that outside of the
interval 0 < x < N the mass is very big and, e.g., negative,
one derives the boundary conditions ΨAð0Þ ¼ ΨBðNÞ ¼ 0.
The quantized values of k > 0 are given by

cos½kN þ δðkÞ� ¼ 0; tan δðkÞ ¼ m
k
¼ w

kN
: ð7Þ

As a result, the spectrum is determined by the condition
w≡ Nm ¼ kNcotðkNÞ, plotted in Fig. 2(a), and is given by
ϵ�ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. At w ¼ 1 two of its real solutions

collide and switch to purely imaginary ones, corresponding
to the decaying edge states. Notice that the nonpropagating
states do not form at m ¼ 0, as could be naively expected,
but rather at m ¼ 1=N.
Using the argument principle, the total ground state

energy is given by

EðN;mÞ ¼ 1

2

I
dk
2πi

ϵ−ðkÞ∂k ln fcos½Nkþ δðkÞ�g; ð8Þ

for the dispersion relation ϵ−ðkÞ of the filled lower band.
The contour runs in the complex k plane encircling all
solutions of Eq. (7). The bulk and boundary terms are
given by Nϵ̄þ b ¼ R ðdk=2πÞϵ−ðkÞ½N þ ∂kδðkÞ�, where
N þ ∂kδðkÞ are bulk and boundary parts of the continuous
density of states. To find the scaling function fðwÞ one
subtracts Nϵ̄þ b from Eq. (8), deforms the integration
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contour to run along the branch cut of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and

rescales the integration variable as z ¼ ikN. As a result, one
finds

fðwÞ ¼ −
Z

∞

jwj

dz
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − w2

p
∂z ln ½1þ e−2z−2δwðzÞ�; ð9Þ

where δwðzÞ ¼ − tanh−1ðw=zÞ. (For more detail on the
derivation see the Supplemental Material [21].) This
expression is plotted in Figs. 1(a) and 2(c) as a full line
and is in good agreement with the numerical data.
Before discussing analytic properties of this scaling

function let us add a couple of remarks. (i) Though the
derivation was given for the model in symmetry class AIII,
the same logic works for the other symmetry classes. One
needs to subtract proper model-dependent bulk and boun-
dary parts, but the scaling term is only determined by the
vicinity of the Dirac point and remains unchanged. (ii) A
similar derivation may be applied to the case of periodic
boundary conditions. In the gauge chosen after Eq. (6),
periodic boundary conditions give ΨðNÞ ¼ ð−1ÞNΨð0Þ. In
this case the quantization condition (7) changes to
cosðkNÞ ¼ ð−1ÞN . After subtracting the bulk energy (there
is no boundary term in this case) and following the same
steps, one arrives at a similar scaling function:

fðwÞ ¼ −2
Z

∞

jwj

dz
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − w2

p
∂z ln ½1 − ð−1ÞNe−z�

¼ −
2w
π

X∞
j¼1

K1ðjwÞ
j

ð−1ÞjN; ð10Þ

where K1ðxÞ is the modified Bessel function. This function
fðwÞ is manifestly symmetric across the topological phase
transition, as it must be for periodic boundary conditions.
However, even in the scaling limit N → ∞ it is dependent
on parity of N; see also Fig. 1(b). The difference may be
attributed to the level crossing at the gap closing point
k ¼ 0 and w ¼ 0 for even N, explaining ∼jwj nonanalytic
behavior of the scaling function. For odd N, all levels
undergo avoided crossings and the scaling function is free
from such nonanalyticity. The CFT result [13,14] predicts
fð0Þ ¼ π=6, which agrees with the case for odd N, while
for even N we obtain fð0Þ ¼ −π=3.
Returning to a system with open boundary conditions, at

small jwj ≪ 1, Eq. (9) leads to

fðwÞ ≈ π

24
þ 1

2π
ð−2wþ w2Þ ln jwj þ � � � : ð11Þ

The first term here is in agreement with the CFT limit (1).
The subsequent terms ensure that f2ðwÞ function, defined
after Eq. (5), is analytic. Indeed, at any finite N the ground
state energy EðN;mÞ and all its derivatives must be
nonsingular at m ¼ 0. To derive the second term in
Eq. (11), one may employ monodromy transformation,
which rotates complex w in a small circle around zero [25].
Upon such transformation the right-hand side of Eq. (9)
picks up a contribution given by a closed contour integral
around a branch cut −jwj < z < jwj times the number of
revolutions. Calculation of such an integral leads to
ið−2wþ w2Þ, implying that fðwÞ must have a logarithmic
branch cut terminating at w ¼ 0 with the discontinuity

FIG. 2. SSH model (AIII symmetry class): (a) Visualization of
the phase shift across the transition. For a fixed w ¼ Nm, a state
exists with energy ϵ�ðkÞ if w ¼ kNcotðkNÞ, Eq. (7). In both
limits w → �∞ there are states at kN ¼ nπ; however, one pair of
states collides at w ¼ 1 (blue) and obtains imaginary k, shown as
a dashed line. (b) Energy spectrum near the gap for a N ¼ 50
SSH Hamiltonian (black), with a pair of evolving edge states
(blue). The edge state crosses the bulk Dirac cone (thin red) at
w ¼ 1, where the momentum becomes imaginary. (c) Comparison
of numerical results for SSH Hamiltonians with the scaling
function (9) for system sizes N ¼ 50, 100, 200 and three
transitions in a two-chain SSH model with topological indexes
Z ¼ 0 → 1, 1 → 2, 0 → 2.

PRL 116, 026402 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

026402-3



across it given by this value. Hence, Eq. (11). We note in
passing that in addition to such a logarithmic branch cut,
the fðwÞ function has an infinite sequence of square root
branch cuts along the imaginary axis of w.
At large argument jwj ≫ 1, i.e., N ≫ jξj, the finite-size

corrections decay exponentially. Remarkably, the rate of
the decay appears to be sensitive to the topology:

fðwÞ ≈
� 1

16
ffiffi
π

p jwj−1
2e−2jwj trivial w ≪ −1;

2we−w topological w ≫ 1.
ð12Þ

(In Z symmetry classes, the two lines may be attributed to
Z and Z þ 1 topological index.) The fact that on the
topological side the scaling function decays half as fast
as on the trivial side may be associated with the appearance
of the edge states in the middle of the gap and effectively
cutting the gap in half. In fact, the purely imaginary
solution of w ¼ kNcotðkNÞ at w ≫ 1 gives the energy
of the edge states as ϵ ¼ �2we−w=N. This is identical to
the asymptotic of fðwÞ=N on the topological side of the
transition, Eq. (12), indicating that the latter origi-
nates solely from the edge state. In the case of periodic
boundary conditions the large w asymptotic is fðwÞ ¼
−ð−1ÞN ffiffiffiffiffiffiffiffi

2=π
p jwj1=2e−jwj, which is different from both

sides of the transition, Eq. (12), in the open boundary
condition case.
Furthermore, note that there develops a peak at w ¼

N=ξ ¼ 1 on the topological side (cf. Fig. 1). At this point
there is a crossover between the regime of the correlation
length being larger than the system size to smaller than the
system size. In other words, here the two edge states at
opposite ends transform from being delocalized and corre-
lated to localized modes; i.e., the topological transition
happens when m ¼ 1=N. This manifests itself in Fig. 2 as
the point where two momenta become imaginary.
Conclusions and outlook.—In conformal field theories

the N−1 term in energy is universal and only depends on the
central charge of the Virasoro algebra [13,14]. Here we find
that in the case of topological phase transitions this term
naturally extends into a scaling function, depending only
on the ratio of the system size to the correlation length.
Furthermore, this scaling function is universal for all
topologically nontrivial classes of noninteracting fermions
in one spatial dimension. While the scaling function for
energy appears to be sensitive to the topological nature of
the transition, this is by no means the common situation.
For example, the finite-size scaling function of the entan-
glement entropy away from the critical point [17], appears
to be symmetric across the topological transition [18] (there
is still an asymmetric size-independent boundary term).
It is natural to ask whether the scaling behavior changes

with interactions, especially for models with central charge
different from c ¼ 1 and c ¼ 1=2 considered here. Another
direction to explore is the relation of the scaling function to
the theory of integrable systems [26]. In particular, if it may

be expressed in terms of solutions of Painleve equations, as
it happens in, e.g., the Ising model [15]. As mentioned
above, the nonanalytic contributions to the finite-size
scaling near w ¼ 0 are related to the monodromy, i.e.,
discontinuity across the branch cut terminating at w ¼ 0,
which happens to be simply a second-order polynomial in
w. An open question is if the full fðwÞ function may be
recovered from the monodromy data, specified for all of its
branch cuts, through the solution of a Riemann-Hilbert
problem [25].
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