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We study the propagation of noninteracting polariton wave packets. We show how two qualitatively
different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike
object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out
of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a “mass wall” on
which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation
of ultrafast subpackets and ordering of a spacetime crystal.
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Field theory unifies the concepts of waves and particles
[1]. In quantum physics, this brought to rest the dispute of
the pre-second-quantization era, on the nature of the wave
function. As one highlight of this conundrum, the coherent
state emerged as an attempt by Schrödinger to prove to
Heisenberg that his equation is suitable to describe particles
since some solutions exist that remain localized [2].
However, the reliance on an external potential and the
lack of other particle properties—like resilience to colli-
sions—makes this qualification a moot point and quantum
particles are now understood as excitations of the field. The
deep connection between fields and particles is not exclu-
sively quantum and classical fields also provide a robust
notion of particles, most famously with solitons [3]. The
particle cohesion is here assured self-consistently by the
interactions, allowing free propagation and surviving col-
lisions with other solitons (possibly with a phase shift).
For a long time, this has been the major example of how
to define a particle out of a classical field, until Berry and
Balázs (an assistant of Schrödinger himself) discovered the
first case of a similar behavior in a noninteracting context:
the Airy beams [4]. These solutions to the Schrödinger
equation (or, equivalently, through the Eikonal approxi-
mation, to Maxwell equations) retain their shape as they
propagate as a train of peaks (or subpackets) and also
exhibit self-healing after passing through an obstacle [5].
The ingredient powering these particle behaviors is phase
shaping, assuring the cohesion by the acceleration of the
subpackets inside the mother packet. The solution was first
regarded as a mathematical curiosity as it is not normal-
izable, until a truncated version was experimentally real-
ized and shown to exhibit this dramatic phenomenology but
for a finite time [6]. The Airy beam is now a recognized
particlelike object, in some cases emerging from fields that
quantize elementary particles [7], thus behaving like a
metaparticle. It is in fact but one example of a full family of
so-called “accelerating beams” [8], that all similarly endow

linear fields with particle properties: shape preservation and
resilience to collisions.
In this Letter, we add another member to the family of

mechanisms that provide noninteracting fields with particle
properties. Namely, we show that two coupled fields of
different masses can support self-interfering wave packets,
resulting in the propagation of a train of subpackets, much
like the Airy beam, but without acceleration, fully normal-
izable and self-created out of a Gaussian initial state. Such
coupled fields can be conveniently provided in the labo-
ratory by polaritons [9], the superposition of light ψCðx; tÞ
and matter fields ψXðx; tÞ, cf. Fig. 1. They find their most
versatile and tunable implementation in semiconductors
where excitons (electron-hole pairs) of a quantum well
are coupled to microcavity photons. Dispersions can
furthermore be tuned by light-matter engineering, e.g.,
with photonic crystal polaritons [10]. Since polaritons can
form condensates with a wave function describing their

FIG. 1. (a) Polariton dispersions. In red: the para-
bolic dispersion of the cavity photon, and the bare exciton. In
blue: the polariton branches E�. The vertical dashed lines at i1 and
i2 mark the inflection points of the LPB. Parameters:ΩR ¼ 2meV,
mC ¼ 0.025meVps2μm−2, mX ¼ 2 meVps2 μm−2. (b) Effective
masses for the LPB as a function of k: inertial mass m1 (purple),
diffusive mass m2 (blue, negative when i1 < k < i2), and group
velocity v− (green).
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collective dynamics [11], they are a dream laboratory to
investigate the wave packet propagation in a variety of
contexts [12], such as propagation of spin [13], bullets [14],
or Rabi oscillations [15] with technological applications
already in sight [16,17]. Polaritons are highly valued for
their nonlinear properties due to particles’ self-interactions
[18], illustrated by a whole family of solitons (bright, dark,
composite…) [19–22]. Recently, however, also the non-
interacting regime has proved to be topical, with reports of
Skyrmion analogues [23], band structure engineering [24]
focusing and conical diffraction [25], Bosonic Josephson
junctions [26], emulates of oblique dark and half solitons
[27], topological edge modes [28,29], or the implementa-
tion of Hebbian learning in neural networks [30] to name a
few but illustrative examples. In most of these cases,
interactions bring the physics to even farther extents rather
than spoiling the underlying linear effect, that remains
nevertheless the one capturing the phenomenon. The linear
regime can be achieved at low densities [31] since the
polariton interaction at the few-particles level is small.
The dynamics of the wave function jψi is then ruled by the
polariton propagatorΠ such that jψðtÞi ¼ Πðt − t0Þjψðt0Þi.
In free space, it is diagonal in k space [18]:

hk0jΠðtÞjki ¼ exp
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where mC;ðXÞ is the photon (exciton) mass, Δ their detun-
ing, and ΩR their Rabi coupling. The eigenstates of the
propagator, ΠðtÞjjk⟫� ¼ expð−iE�tÞjjk⟫�, define both
the polariton dispersion E� ¼ ℏk2mþ þ 2Δ∓k2Ω and the
canonical polariton basis jjk⟫� ∝ ½E�ðkÞ; 1�T jki, where
m� ¼ ðmC �mXÞ=ðmCmXÞ are the reduced relative
masses, kΩ ¼
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dressed momentum and jki the plane wave of well-defined
momentum k. We use the notation jj⟫� for upper (þ)
and lower (−) polaritons. A general polariton state is thus
expressed as jjψ⟫� ¼ R∞−∞ ϕ�ðkÞjjk⟫�dk, where ϕ�ðkÞ is
the scalar-field polariton wave function. Except for a well-
defined polariton state in k space, i.e., a fully delocalized
polariton in real space, the photon and exciton components
of a polariton cannot be jointly defined by a given wave
packet ϕðkÞ. Indeed, except if ϕðkÞ ¼ δðkÞ, one component
gets modulated by the E�ðkÞ factor needed to maintain the
particle on its branch. One consequence of this composite
structure is that a polariton cannot be localized in real
space, with both its photon and exciton components
simultaneously localized. Choosing ϕðkÞ such that either
ψCðx; t ¼ 0Þ or ψXðx; t ¼ 0Þ is δðxÞ smears out the other
component around the localized field, as shown in
Figs. 2(a)–2(b). Such constraints result in a rich phenom-
enology with a large enough set of momenta. We now
discuss some of the effects that arise from self-shaping and
self-interferences of polaritons due to their composite
structure.

It has long been known that the mass imbalance
mC ≪ mX results in peculiar dispersions for the upper
(Eþ) and lower (E−) polariton branches, shown in Fig. 1(a)
along with the parabolic dispersions of the light photon
and the heavy exciton, meeting at k ¼ 0 (Δ ¼ 0). In order
to provide a comprehensive picture including the two
inflection points that can result for the lower polariton
branch (LPB), we assume here a smaller mass ratio than in
typical experiments. The most important effects are, how-
ever, due to the first inflection point that is found in most
samples. To access more inflection points, one can also turn
to other platforms such as modulated photonic lattices [32],
crystals [10], or coupled wave guides [33] (we refer to
the Supplemental Material [34] for further discussion and
experimental implementations with currently available
systems). The dynamics of a Gaussian wave packet large
enough in space to probe only parabolic portions of the
dispersion in reciprocal space is essentially that expected
from Schrödinger dynamics [35], diffusing with mean
standard deviation of the packet size [34]:

σxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2xð0Þ þ ðℏt=½2m2σxð0Þ�Þ2

q
: ð2Þ

For nonparabolic dispersions, the degeneracy is lifted for
some of the various concepts of masses, famously unified
for the gravitational and inertial masses by Einstein as part

FIG. 2. (a) Localizing a polariton in space is possible for one of
its component only (here in dashed red); the other field smears out
to keep the particle on its branch. (b) Counterpart of (a) in energy-
momentum space. (c) Spacetime evolution of jψCðx; tÞj2 and
jψXðx; tÞj2 with a photon of momentum k0 ¼ 0.5=μm as an initial
condition, with quantum states along the lines shown on the Bloch
sphere. (d) Configuration with Δ ¼ −ΩR, preventing splitting of
the beam and resulting in ultrafast, Rabi-powered, propagating
subpackets, as shown for three snapshots of time in (e).
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of his theory of gravitation. Wave packets have two
different effective masses, m1 and m2 [36], describing,
respectively, propagation and diffusion. A wave packet
propagates with a group velocity v� ¼ ∂kE�ðkÞ. This
defines the inertial mass m1 that determines the wave
packet velocity from de Broglie’s relation p ¼ ℏk and the
classical momentum p ¼ mv� as

m1ðE; kÞ ¼ ℏ2kð∂kEÞ−1: ð3Þ
A second mass m2, that we will call the diffusive mass, is
associated with the spreading of the wave packet according
to Eq. (2) and depends on the branch’s curvature; it reads

m2ðE; kÞ ¼ ℏ2ð∂2
kEÞ−1: ð4Þ

These two masses m1, m2, and the packet velocity v− are
plotted in Fig. 1(b) for the LPB. Unlike parabolic dis-
persions, where they are equal, polariton dispersions yield
different inertial and diffusive masses. In particular, the
k-dependent inertial mass m1 imposes a maximum speed
for the lower polaritons [34]. Beyond the inflection point i1,
polaritons slow down with increasing momentum (at large
k, polaritons become bare particles with no such kinematic
restrictions). The coupling of the two fields with different
masses results in the heavier one lagging behind the other,
as seen in Fig. 2(c) where a Gaussian photon wave packet
is imparted with a momentum k ¼ 0.5=μm, achieved
experimentally by sending a pulse at an angle and over-
lapping both branches. This prevents the photon and
exciton packets to propagate Rabi oscillating, and instead
forces a splitting in two beams—the orthogonal polariton
states which are eigenstates for the corresponding
wave vector, as shown by their trajectory on the Bloch
sphere—connected by a Rabi oscillating tunnel. The Rabi
oscillations only take place when there is a spatial overlap

between the polaritons. The two propagating packets
maintain their coherence despite their space separation
and would Rabi oscillate if meeting again, due, for
instance, to a ping-pong reflection [37]. The splitting in
two beams can be minimized by tuning parameters to
equalize the polaritons masses, in particular, the inertial
ones. Combined with the bending of the Rabi oscillations in
spacetime, which can be achieved at nonzero detuning, this
leads to propagation of Rabi oscillations, which produce
ultrafast subpackets moving inside a mother packet, as
shown in Fig. 2(d) and for three time snapshots in 2(e).
The subpackets, continuously formed in the tail of the
mother packet, propagate inside 1 order of magnitude
faster, powered by Rabi oscillations, before dying in the
head. Each subpeak acquires properties of an identifiable
object, traceable in time. The full dynamics is available in
an accompanying video [34]. Now on the diffusive mass
m2: it diverges at the two inflection points i1;2 of the LPB
and is negative in between. Exciting at the inflection points
thus cancels diffusion as seen in Eq. (2) and in Figs. 3(a)
and 3(b) with the propagation of a broad [σxð0Þ ¼ 20 μm]
lower-polariton wave packet with an imparted momentum
of (a) k0 ¼ 0 and (b) k0 ¼ i1. The excitation around the
inflection point has already been used to generate bright
solitons and soliton trains [19,20,38,39]. In these cases,
the soliton mechanism is the interplay between negative
effective mass and repulsive interactions. The role of
the high effective mass close to the inflection point,
which cancels the diffusion, was not, however, fully
estimated.
The interesting phenomenology discussed so far illus-

trates isolated features of polariton propagation. A new
physical picture emerges when combining several aspects
within the same wave function, leading to the concept of

FIG. 3. (a)–(d) Propagation of lower polariton packets for various momenta and size, showing the emergence of the SIP for narrower
packets. (e) Dynamics of an even narrower packet [σxð0Þ ¼ 2 μm with no momentum k0 ¼ 0]. (f) Current probability j at early times,
showing the coexistence and interleaving of net counterpropagating flows. (g) Phase map in a selected region, showing π jumps
associated to each subpeak. (h) Intensity profile at t ¼ 90 ps with the evolution of the quantum state on the Bloch sphere corresponding
to the path (from green to red) plotted in (e). (i) Wavelet decomposition of (e) at t ¼ 100 ps, and (j) in the same configuration but
exciting with a momentum k0 ¼ i2. (k) Spacetime honeycomb lattice when combining the SIP with Rabi oscillations by starting
with a photon as an initial condition. (l) Zoom of the hexagonal lattice.
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self-interfering packets (SIP). This occurs when reducing
the wave packet size in real space, that is, increasing
the staggering on the dispersion in momentum-space
[σkð0Þ ¼ 1=σxð0Þ], to an extent enough to probe polaritonic
deviation from the parabolic dispersion. In this case, the
negative mass plays an explicit role. Negative masses are a
recurrent theme in physics but this is typically meant for the
inertial mass [40]. The sign of the diffusive mass would
seem not to play a role since it is squared in Eq. (2), and this
is indeed the case for momenta i1 < k < i2. When strad-
dling over the divergence, however, self-interferences occur
between harmonics of the packet subject to the positive
mass and others to the negative mass. This results in a
reshaping of the wave function, as shown in Figs. 3(c)
and 3(d) decreasing σxð0Þ down to 10 and 4 μm. The part
of the packet that goes beyond the divergence is reflected
back and interferes with the rest that still propagates
forward, resulting in ripples. Reducing the packet to
σxð0Þ ¼ 2 μm produces the striking pattern seen in
Fig. 3(e), without even imparting momentum. While for
a parabolic dispersion, squeezing the packet in space
merely causes a faster diffusion, in the polariton case,
there is thus a critical diffusion beyond which the packet
stops expanding and folds back onto itself. Since this
happens when the wave function encounters the inflection
point of the LPB, there is a “mass wall” against which the
packet bounces back. If the dispersion also features another
inflection point at larger k, this reflection happens again,
shielding the core of the mother packet from this self-
interference, as shown on the cut in intensity in Fig. 3(h)
[the diffusion cones are the solution of ∂2

kE− ¼ 0, cf.
Fig. 3(e)]. More importantly from a conceptual point of
view, as a result of this coexistence of masses of opposite
signs within the same packet, the mother wave packet jψi
fragments itself into two trains of daughter shape-
preserving subpackets traveling in opposite directions.
The overall momentum hψ jpjψi ¼ 0 is null but the self-
shaping of the wave function redistributes it through its
subpackets with nonzero momenta. Each subpeak can be
identified as a polariton lying onto the meridian between
jLi and jXi, as seen by following its quantum state on the
Bloch sphere, Fig. 3(h). The SIP can therefore be seen as a
train of successive polariton packets, “emitted” at the rate
of Rabi oscillations by the area shielded from self-
interferences, retaining their individuality as they propagate
inside the mother packet. The quantum state dynamics
along these paths is seen vividly in a video in the
Supplemental Material [34]. Successive peaks furthermore
feature a maximal phase shift of π in the phase ϕðx; tÞ of
the total wave function ψðx; tÞ ¼ jψðx; tÞj exp½iϕðx; tÞ�,
as shown in Fig. 3(g). Although they do not involve
self-interactions to account for their cohesion, these
propagating subpackets behave in many respects as
solitonlike objects. The analogy with Airy beams is
conspicuous.

One can gain additional insights into the nature of
the SIP through the current probability j¼ iℏ=2m1ðψ�∂xψ−
ψ∂xψ

�Þ, cf. Fig. 3(f), where the packet is plainly seen to
alternate backward and forward net flows. Alternatively,
considering the wavelet transform (WT) [41] Wa;bðψÞ ¼
ð1= ffiffiffiffiffiffijajp Þ Rþ∞

−∞ ψðxÞG�½ðx − bÞ=a�dx, in our case, of the
Gabor wavelet family GðzÞ ¼ ffiffiffi

π4
p

expðiωxÞ expð−x2=2Þ,
allows us to decompose the wave function into Gaussian
packets, which are the basic packets as far as propagation and
diffusion are concerned. This extension of the Fourier
transform is common in signal processing but has found
so far little echo to study wave packet dynamics [42]. We
show in Fig. 3(i) the energy density jWk;xj2 of the wave
function in the ðx − kÞ plane at t ¼ 100 ps. One can see
clearly how self-interferences confine the polariton packet
within the diffusion cone (blue dashed lines) by diverting the
flow backward, (i) one or (j) two times when the second
inflection point i2 is reached.Other fundamental connections
can be established. For instance, patterns strikingly similar
to Fig. 3(e) were observed in the quenched dynamics
of a quantum spin chain with magnons [43], a completely
different system. This suggests that coupled light fields
feature fundamental and universal dynamical evolutions.
Combining this characteristic pattern with that of Rabi
oscillations leads to the spacetime propagation presented
in Fig. 3(k). The protected area exhibits simple Rabi
oscillations. The outer area is propagating upper polaritons
and is not affected either by oscillations nor interferences. In
the SIP area, however, sittingbetween the twomasswalls, the
interplay of Rabi oscillations and self-interferences produces
a hexagonal lattice. Such a structure is known to arise from
interferences of three beams [44,45] and indeed in our case, it
arises from interferences of two LPs (on both sides of the
inflection point) and one UP [34]. This remarkable structure
is, again, sculpted self-consistently out of a unique photon
field with a simple Gaussian shape by the dynamics of
coupled noninteracting fields.Here, insteadof the emergence
of propagating particles, a spacetime crystal is formed with
the manifest ordering of the previously freely propagating
train of polaritons.
In conclusions, we discussed the intricate wave packet

propagation of coupled fields (polaritons). Unlike the
eventual complete indeterminacy of Schrödinger wave
packets in a parabolic dispersion, polaritons can sustain
traceable objects with always well-defined properties, such
as their shape, position, momentum, and quantum state.
This gives rise to a concept of particles similar to that
brought by solitons in nonlinear media or Airy beams
in noninteracting ones. While these are formed by self-
interaction and phase shaping, the individuality of polar-
itons is acquired and maintained through self-interferences
powered by the Rabi coupling. This shows that even in the
linear regime, the polariton dynamics is rich and able to
produce complex structures out of mere Gaussian initial
states. This could lead to applications, following the spirit
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of self-accelerating beams. For instance in the classical
regime, in a way similar to particle clearing through Airy
wave packets [46], polaritons could impart momentum
powered by the Rabi oscillations, or, by exciting polaritons
with quantum light [47], quantum SIP could propagate in
properly wired polariton circuits to perform Linear optical
quantum computing, thanks to the linearity of the effect.
SIP can indeed carry qubit states at the one-particle level,
unlike solitons with which they otherwise share similar
propagation qualities.
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