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We use the amplitude expansion in the phase field crystal framework to formulate an approach where the
fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field.
The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including
compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows
for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic
excitations in the system are relaxed through phonon emission.
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One of the grand challenges in materials modeling is to
take into account the large range of different time scales
from elastic vibrations to vacancy diffusion and length
scales varying from atomistic details to dislocations and
grain boundaries at micron scales. Phase field crystal (PFC)
models were originally introduced [1] in order to couple
diffusive time scales with atomistic spatial resolution and
are a suitable candidate for a framework with a wide range
of temporal scales. This is achieved by coarsening out
fluctuations due to finite temperature by describing the
system in terms of a mass density field which is averaged
over thermal fluctuations. Over the past decade, PFC
models have been used successfully to study a wide variety
of different phenomena in solids [2].
One of the important advantages of the PFC models is

the intrinsic incorporation of elastic energy associated with
a fixed interatomic length scale. However, this poses a great
challenge for the dynamics of the system: elastic excita-
tions emit phonons which cannot be described using
overdamped, purely dissipative dynamics. An attempt to
include fast time scales in the dynamics was with the
introduction of an explicit second order time derivative in
the equation of motion for the PFC mass density field ~ρ as

∂2
t ~ρþ α∂t ~ρ ¼ ∇2

δ ~F
δ~ρ

; ð1Þ

where ~F is a PFC free energy and α a dissipation parameter
[3,4]. The incorporation of the second order time derivative
gives rise to short wavelength oscillations accelerating
relaxation processes but fails to describe large scale
vibrations. This was pointed out by Majaniemi et al.
who studied coupling of a displacement field to the mass
density field within the PFC framework [5,6].
Fast dynamics have been studied more systematically

by coupling a velocity field with the PFC mass density field

[7,8]. However, two main obstacles arise from this sort of
coupling. First, the PFC mass density field oscillates at an
atomistic length scale creating large gradients which result
in spurious unphysical flows. Second, it is not clear how
dissipation at microscopic length scales should be incorpo-
rated. Hydrodynamics considers smooth fields, and it is
hard to extend the theory to spatially microscopic systems
with velocity variations at the interatomic length scale.
Some attempts have been made recently to overcome

these problems by introducing a mesoscopic mass density
which can be obtained by smoothing out the PFC mass
density with specific Fourier filters [9] and by considering
colloidal systems where hydrodynamics is solved only in
the solvent surrounding the colloidal particles [10]. In this
Letter, we introduce an approach that avoids the possible
ambiguity of coarse graining the fields and that is not
limited to colloidal systems.
In this work, we follow the idea of coarse graining the

mass density and velocity fields by using the amplitude
expansion framework [11,12] where the structure is
described by the amplitudes of the atomistic density
oscillations instead of the PFC mass density field itself.
This framework allows for a description of the material by
smooth fields, and it can be shown to reduce to well-known
macroscopic theories. The displacement field is naturally
coupled to the amplitudes of the density oscillations and to
the velocity field, with no need for additional assumptions.
We derive the dynamical equations for the system by first

writing down energy conserving dynamics for the PFC
system and then coarse graining these equations as well as
the energy in order to obtain conserved dynamics for the
mesoscopic system generated by a mesoscopic energy.
After this, we add dissipation in the system to make the
dynamics irreversible. We consider some limits of the
model and study the grain rotation problem to make a
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connection with relaxing elastic excitations through
phonon emission.
Conserved dynamics and coarse graining.—We start

by writing down conserved dynamics generated by an
effective Hamiltonian

~H½~ρ; ~v� ¼ T½~ρ; ~v� þ ~F½~ρ�; ð2Þ

where T½~ρ; ~v� ¼ R
drð~ρj~vj2=2Þ is the kinetic energy and

~F½~ρ� is any configuration free energy of the PFC type with a
periodic ground state in the solid phase. Here, ~ρ, ~v are
the PFC mass density and velocity fields, respectively.
We assume conservation of mass and momentum density
given by

∂t ~ρ ¼ −∇ · ð~ρ ~vÞ; ð3Þ

∂tð~ρ ~vÞ ¼ −∇ · ð~ρ ~v ⊗ ~vÞ þ ~f; ð4Þ

where ~f is a force term determined by total energy
conservation.
We expand the density ~ρ in Fourier space as

~ρðr; tÞ ≈ ρðr; tÞ þ
X
j

½ηjðr; tÞeiqj·r þ c:c:�: ð5Þ

Here, qj are the reciprocal lattice vectors, ηj are the
amplitudes, ρ is the density field averaged over a unit
cell of the Bravais lattice, and c.c. denotes the complex
conjugate.
The amplitudes ηj and the density ρ are assumed to be

slowly varying in space and are treated as constants over a
length scale 1=jqjj. Furthermore, the amplitudes ηj are
taken to be complex valued to allow for displacements.
Change of coordinates r → r − uðrÞ in Eq. (5), where u is
a spatially slowly varying displacement field, results in
ηj → ηj exp ð−iqj · uÞ giving a meaning to the phase of the
complex amplitudes.
Following Ref. [12], we coarse grain Eqs. (3) and (4) to

obtain time-evolution equations for fields ηj, ρ and a
mesoscopic velocity v. We present the results here, the
details may be found in the Supplemental Material [13].
From the mass density conservation (3), we get

∂tρ ¼ −∇ · ðρvÞ; ð6Þ

∂tηj ¼ −Qj · ðηjvÞ; ð7Þ

whereQj ¼ ∇þ iqj. The momentum density conservation
of Eq. (4) gives

ρ
Dv
Dt

≔ ρð∂tv þ v ·∇vÞ ¼ f; ð8Þ

for the mesoscopic velocity with the help of Eq. (6).

The mesoscopic force term f in Eq. (8) is determined by
the conservation of the effective HamiltonianH ¼ T½ρ; v�þ
F½ρ; fηjg�, where T is the kinetic energy

T ¼
Z

dr

�
1

2
ρjvj2

�
ð9Þ

and F is a configuration free energy obtained from coarse
graining ~F and described in terms of ρ and fηjg. We require
that ∂tH ¼ 0. This results in

f ¼ −ρ∇ δF
δρ

−
X
j

�
η�jQj

δF
δη�j

þ c:c:

�
: ð10Þ

For the remainder of this Letter, we choose a configu-
ration free energy of a 2D hexagonal lattice

F ¼
Z

dr

�
Bl

2
ρ2 −

τ

3
ρ3 þ ν

4
ρ4 þ

~Bx

2
j∇ρj2

þ
�
ΔB
2

− τρþ 3ν

2
ρ2
�
A2 þ

X3
j¼1

BxjGjηjj2

þ ð6νρ− 2τÞ
�Y3

j¼1

ηj þ c:c:

�
þ3ν

4

�
A4 − 2

X3
j¼1

jηjj4
��

;

ð11Þ

where A2¼2
P

jjηjj2, Gj ¼ ∇2 þ 2iqj ·∇, Bl ¼ ΔBþ Bx,
τ and ν are bulk energy parameters, and ~Bx is a surface
energy parameter for the density ρ. We have chosen a
representation for the vectors qj as q1 ¼ ð− ffiffiffi

3
p

=2;−1=2Þ,
q2 ¼ ð0; 1Þ, and q3 ¼ ð ffiffiffi

3
p

=2;−1=2Þ. This energy can be
obtained from the standard PFC free energy

~F ¼
Z

dr

�
ΔB
2

~ρ2 þ Bx

2
~ρð1þ∇2Þ2 ~ρ − τ

3
~ρ3 þ ν

4
~ρ4
�

by coarse graining, as discussed in Ref. [20].
Using the configuration free energy F, the functional

derivatives in Eq. (10) become

δF
δη�j

¼ ðΔB − 2τρþ 3νρ2Þηj þ BxG2
jηj

þ ð6νρ − 2τÞ
Y
i≠j

η�i þ 3νðA2 − jηjj2Þηj ð12Þ

and

δF
δρ

¼ ðBl þ 3νA2 − ~Bx∇2Þρ − τρ2

− τA2 þ νρ3 þ 6νðη1η2η3 þ c:c:Þ: ð13Þ

Dissipation.—To incorporate irreversible effects in the
dynamics, we add dissipation. For the time evolution of
the velocity, we choose Navier-Stokes-type dissipation
resulting in
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ρ
Dv
Dt

¼ fþ μS∇2v þ ðμB − μSÞ∇∇ · v; ð14Þ

where μS is a surface dissipation parameter and μB accounts
for bulk dissipation. Source terms in the time evolution of
the complex amplitude and density provide additional
modes of dissipation:

∂tηj ¼ −Qj · ðηjvÞ − μη
δH
δη�

; ð15Þ

∂tρ ¼ −∇ · ðρvÞ þ μρ∇2
δH
δρ

: ð16Þ

Here, μη and μρ are dissipation parameters.
Now, we have complete dynamics for the system

determined by Eqs. (14)–(16), and it can be shown that
the dynamics leads into a nonincreasing effective
Hamiltonian H in time [13]. Next, we will study some
important limits of the theory.
Liquid limit.—A liquid is described by setting the

complex amplitudes ηj → 0. In this limit, the time-
evolution equation for the velocity field becomes

ρ
Dv
Dt

¼ −∇
�
Bl

2
ρ2 −

2τ

3
ρ3 þ 3ν

4
ρ4
�

þ μS∇2v þ ðμB − μSÞ∇ð∇ · vÞ; ð17Þ

which is accompanied by Eq. (16). When the density
dissipation parameter μρ → 0, this pair of equations
becomes the Navier-Stokes equations for a compressible
flow where the pressure P ¼ ðBl=2Þρ2 − ð2τ=3Þρ3 þ
ð3ν=4Þρ4 is described in terms of a virial expansion in
ρ. Here, we take the long wavelength limit and discard any
derivatives of ρ of higher order than 2. This also removes
the dissipation in Eq. (16).
Overdamped limit.—In the limit where μη and μρ are

large, the set of equations reduces into the usual over-
damped amplitude expansion model [20] described by

∂tηj ¼ −μη
δF
δη�j

; ð18Þ

∂tρ ¼ μρ∇2
δF
δρ

: ð19Þ

This limit is achieved also when the dissipation of the
velocity is large [13].
Small displacement limit.—Another interesting limit is

the limit of small displacements. Writing the complex
amplitudes as ηj ¼ ϕj exp ð−iqj · uÞ, we can rewrite the
system in terms of the order parameter fields ϕj and the
displacement field u. Assuming a perfect hexagonal crystal
implies that ϕj ¼ ϕ. Now, Eq. (15) gives

∂tϕ ¼ −∇ · ðϕvÞ − 1

2
μη

δF
δϕ

; ð20Þ

Du
Dt

¼ v −
1

2
μηϕ

−2 δF
δu

; ð21Þ

with the advective derivative D
Dt. With small enough

displacements u, we assume that ρ and ϕ are constant
(ρ0 and ϕ0) and keep only u and v up to linear order.
Furthermore, we assume that u changes relatively slowly in
space discarding all the derivatives of order higher than 2.
We obtain

ρ0∂tv ¼ f ≈ −
δF
δu

; ð22Þ

∂tu ¼ v −
1

2
μηϕ

−2 δF
δu

; ð23Þ

δF
δu

≈ −3Bxϕ2
0ð∇2uþ 2∇∇ · uÞ: ð24Þ

Here, we assume that there is no dissipation of velocity.
Differentiating Eq. (23) yields

∂2
tu ¼ 3Bxϕ2

0ρ
−1
0 ð∇2uþ 2∇∇ · uÞ

þ Bxμη∂tð∇2uþ 2∇∇ · uÞ; ð25Þ

by substituting ∂tv from Eq. (22) giving us a damped wave
equation for the hexagonal crystal symmetry.
With the ansatz u ¼ exp ðik · r − ωtÞ, we find the

dispersion relation ω ¼ ωðkÞ. In particular, for the trans-
verse modes u ¼ u⊥ with k · u⊥ ¼ 0, we obtain

ω2⊥ − Bxk2μηω⊥ þ 3Bxϕ2
0k

2ρ−10 ¼ 0; ð26Þ

which we can solve for ω⊥ ¼ ωd⊥ þ iωo⊥ giving

ωd⊥ ¼ 1

2
Bxμηk2;

ωo⊥ ¼ � k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bx

ρ0
ð12ϕ2

0 − Bxμ2ηρ0k2Þ
s

; ð27Þ

if k2 < 12ϕ2
0=ðBxμ2ηρ0Þ. Here, ωd⊥ is the damping compo-

nent and ωo⊥ is the oscillating component. If
k2 > 12ϕ2

0=ðBxμ2ηρ0Þ, we get pure damping with

ωd⊥ ¼ 1

2
Bxμηk2 �

k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bx

ρ0
ðBxμ2ηρ0k2 − 12ϕ2

0Þ
s

; ð28Þ

where the complete solution is a superposition of these
two modes.
Figure 1 shows the dispersion relation for the oscillating

component in the damping and oscillating cases. Our result
shows that in the long wavelength limit, the oscillating
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small displacement modes correspond to propagating
phonons. For wavelengths below a critical value, the modes
become purely diffusive. This is in contrast to previous
studies [3,4] using Eq. (1), where only diffusive modes
exist in the long wavelength limit [6]. Note that when
μη ¼ 0, the damping vanishes, resulting in an energy
conserving wave equation with longitudinal and transverse
modes with velocities c2t ¼ 3Bxϕ2

0ρ
−1
0 for transverse and

c2l ¼ 9Bxϕ2
0ρ

−1
0 for longitudinal modes.

Grain rotation.—To test the theory numerically, we
study the dynamics of a rotated circular crystalline grain
embedded in a crystalline matrix. Although experimental
studies of polycrystalline patterns suggest that smaller
grains usually disappear at the boundary of two larger
grains rather than in the middle of a single matrix [21], the
rotated grain remains important for understanding grain
boundary motion and has been studied theoretically [22]
using molecular dynamics simulations [23,24] and PFC
models [25,26].
The initial misorientation gives rise to a grain boundary

at the perimeter of the grain due to a difference in the
orientation of the crystal with respect to the surrounding
matrix. Taken that the grain boundary motion is curvature
driven, it is expected that the area of the grain decreases
linearly in time as the rotation angle increases [26]. The
increase of the rotation angle is due to the conservation of
dislocation cores whose number is proportional to γðtÞRðtÞ,
where γ is the misorientation angle and R is the radius of
the grain. In our calculations, we fixed the energy param-
eters and varied the velocity dissipation parameter μS
keeping it equal to μB.
Figure 2 shows the density field ρ and the velocity field v

during the shrinking process exposing the dislocation cores
at the boundary of the grain and showing the rotation of the
grain facilitated by the velocity field v. Note that the slowly
varying density ρ does not vary much even at disloca-
tion cores.

The rate of shrinking is shown in Fig. 3. The shrinking of
the grain and also the energy dissipation are faster when we
decrease the dissipation parameter μS. For comparison, we
have included a calculation with overdamped dynamics
given by Eqs. (18) and (19) and also overdamped dynamics
with elastic equilibration, where the energy is minimized
with respect to the deformation field u at all times as
described in Ref. [27]. The calculations verify the analyti-
cal analysis, in particular, that R2 decreases linearly in time
and that the value of γR remains the same regardless of the
dynamics.
Changing μS changes the rate of the dynamics. The

dynamics in the μS → 0 limit is very similar to dynamics
subject to the constraint of elastic equilibrium, and we
suspect the fast dynamics when μS → 0 is caused by the
minimization of elastic excitations by creation of vibrations
which are present throughout the shrinking process with
hydrodynamics. We keep ρ constant for overdamped
dynamics with and without elastic equilibration since
the effect of density is negligible in the absence of hydro-
dynamics. The initial configuration was identical for all the
different cases with a misorientation angle of 5° and a grain
diameter half of the domain width. For numerical details,
see Ref. [28].

FIG. 1. The dispersion relation ~ωo⊥ð~kÞ ¼ ~k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~k2

p
for the

oscillating component of the transversal wave in the small
displacement limit. Here, ~ωo⊥ ¼ ωo⊥ρ0μη=ð6ϕ2

0Þ and ~k2 ¼
k2Bxμ2ηρ0=ð12ϕ2

0Þ. See the text for details.

FIG. 2. (a) The density field ρ with a blowup of the recon-
structed PFC density field ~ρ. (b) The magnitude of the velocity
field jvj with a quiver field on top to show the direction of v.

FIG. 3. The squared radius R2 of the grain as a function of time
for various different values of μS and for overdamped dynamics
and elastically equilibrated overdamped dynamics.
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Summary and discussion.—We introduce a schemewhich
couples fast dynamics to dissipative processes on a meso-
scopic length scale. The dynamics arises from conservation
laws which couple a velocity field with the fields describing
the structure of the system in a consistent manner. We have
also shown with a numerical example how the dynamics
changes due to the presence of vibrating modes.
The method presented here allows for different types of

dissipation in the time evolution of the system. For
example, instead of the Navier-Stokes-type dissipation
used here, one could use a Langevin-type dissipation
−μLv in the velocity equation (14). This breaks the
Galilean invariance of the velocity equation and introduces
dissipation similar to that commonly used in PFC dynamics
as shown by linearizing hydrodynamics [7]. The Navier-
Stokes-type dissipation used here avoids the problem of
bulk dissipation described in Ref. [26] since the velocity is
Galilean invariant, allowing for parallel transport of all
fields while the dissipation takes place only when ∇2v ≠ 0
so that uniform motion does not dissipate energy. This also
suggests that large grains are more sluggish with traditional
PFC dynamics described by Eq. (1) than with the full
hydrodynamics since dissipation happens everywhere in
the grain rather than just at the perimeter.
The approach of this Letter is general and can be extended

to any configuration free energy F which can be written in
terms of slowly varying complex amplitudes and density
field. We expect this approach to be useful for problems
where lattice vibrations, mass transport, and other fast
phenomena are coupled to the solid-liquid symmetry break-
ing. Some examples of such problems are fracture dynamics,
fast solidification, and coarsening of polycrystalline patterns.
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