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We report the Prandtl-number (Pr) and Rayleigh-number (Ra) dependencies of the Reynolds number
(Re) and mean convective heat transport, measured by the Nusselt number (Nu), in horizontal convection
(HC) systems, where the heat supply and removal are provided exclusively through a lower horizontal
surface of a fluid layer. For laminar HC, we find that Re ∼ Ra2=5Pr−4=5, Nu ∼ Ra1=5Pr1=10 with a transition
to Re ∼ Ra1=2 Pr−1, Nu ∼ Ra1=4 Pr0 for large Pr. The results are based on direct numerical simulations for
Ra from 3 × 108 to 5 × 1010 and Pr from 0.05 to 50 and are explained by applying the Grossmann-Lohse
approach [J. Fluid Mech. 407, 27 (2000)] transferred from the case of Rayleigh-Bénard convection to the
case of laminar HC.
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Horizontal convection (HC) [1–3] is a paradigm system
to study heat and momentum transport in such flow
configuration systems where heating and cooling are
applied to different parts of the same horizontal surface
of a fluid layer. This type of convection is relevant in many
geophysical systems, in particular, in the large-scale ocean
circulation [4], as heat is supplied to and removed from the
ocean predominantly through its upper surface, where the
ocean contacts the atmosphere [5]. HC is also relevant in
process engineering; see, e.g., Ref. [6].
HC systems, in which the heat exchange takes place

exclusively through the bottom plate, are determined
mainly by the Rayleigh number Ra≡ αgΔL3=ðκνÞ, the
Prandtl number Pr≡ν=κ, and geometrical characteristics of
the cell like the length-to-height aspect ratio Γ ¼ L=H and
the relative areas of the heated and cooled surfaces
compared to the bottom area. Here, ν denotes the kinematic
viscosity, κ the thermal diffusivity, α the isobaric thermal
expansion coefficient of the fluid, g the acceleration due to
gravity, L the length, and H the height of the convection
cell, and Δ≡ ðTþ − T−Þ with Tþ the temperature of the
heated part of the bottom and T− the temperature of the
cooled part of the bottom.
The Rossby [5] model for the scaling with Ra and Pr

of the mean heat flux, measured by the dimensionless
Nusselt number Nu≡ −h∂T=∂ziþ=ðΔ=LÞ, suggests Nu ∝
Ra1=5Pr0, i.e., independence from Pr. Here, z is the vertical
coordinate, T the temperature, and h·iþ denotes the
averaging over the heated part of the bottom and in time.
The proportionality Nu ∝ Ra1=5 is supported by several
numerical [6–10] and laboratory [1,9,11,12] experiments in
nonturbulent HC, while the independence of Nu from Pr is
not. For example, direct numerical simulations (DNS) by
Gayen et al. [7] showed an increase of Nu with growing Pr,
which is stronger for Pr < 1. The vertical-turbulent-plume
model by Hughes et al. [11] suggests the scaling Nu ∝
Ra1=5 Pr1=5 with a Pr dependence, which, as we show

below, is too strong, at least for the here considered laminar
HC flows.
In this Letter, we report DNS results on the dependences

of the Reynolds number (Re) and Nu on Ra and Pr in
laminar HC. The obtained results are in perfect agreement
with the scaling power laws that one can derive by applying
the Grossmann-Lohse [13] (GL) ansatz to the case of
laminar HC. Namely, we exploit the idea that in laminar
thermal convection, the time- and volume-averaged thermal
and viscous dissipation rates are determined mainly by their
boundary layer (BL) contributions. Note that the GL theory
[13–17] for different scaling regimes in thermal convection
was developed for the case of Rayleigh-Bénard convection
(RBC) [18–22], in which the temperature Tþ is imposed at
the whole bottom, the top temperature is set to T−, and the
reference distance L is the height of the cell.
In our DNS, we use the finite-volume code GOLDFISH to

solve numerically the following equations in a Cartesian
coordinate system ðx; y; zÞ≡ ðx1; x2; x3Þ, which describe
HC flows in Boussinesq approximation: ∇ · u ¼ 0 and

∂u=∂tþ u · ∇uþ ρ−1∇p ¼ ν∇2uþ αgθez; ð1Þ
∂θ=∂tþ u ·∇θ ¼ κ∇2θ; ð2Þ

with u≡ ðux; uy; uzÞ the velocity vector function, θ the
reduced temperature, θ≡ T − 0.5ðTþ þ T−Þ, p the hydro-
dynamic pressure (without hydrostatic part), ρ the density,
and ez ≡ ð0; 0; 1ÞT . On the domain boundaries, no-slip
boundary conditions are considered: u ¼ 0. At the bottom
heated part Sþ, holds θ ¼ Δ=2, while θ ¼ −Δ=2 on a
cooled bottom part S−. At the rest of the bottom and also at
the top and side walls, ∂θ=∂n ¼ 0 holds with n the unit
normal vector.
The area jSj of the bottom S and the area jSþj of the

heated part of the bottom are related as jSj ¼ ΓjSþj, Γ > 2,
and the areas of the heated and cooled parts are equal
jSþj ¼ jS−j. In our DNS, Γ ¼ 10 is considered and the
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length, height, and width of a parallelepiped computational
domain are related as 10:1:1 (see a sketch of the studied HC
setup in Fig. 1).
To investigate heat and momentum transport in laminar

HC, we have conducted DNS for Ra from 3 × 108 to
5 × 1010 and Pr from 0.05 to 50 (see the details in Fig. 2).
For lower Ra and not too small Pr, the HC flows are steady.
With increasing Ra and decreasing Pr, the HC flows tend to
be unsteady (see also, e.g., Ref. [7]). Therefore, to resolve
the HC flows properly [23], we use different meshes in our
simulations (see parameters of the computational meshes
used in the DNS in the caption of Fig. 2). Note that HC
flows are generally much slower and stabler than RBC
flows for similar Rayleigh numbers. Thus, for Pr ¼ 1 and
Ra ¼ 109, bulk flows in RBC are turbulent [24–27], while
those in HC are still steady [7].

The obtained results with respect to the scalings of Nu
and Re with Ra and Pr in laminar HC are summarized in
Fig. 3. For small and moderate Pr, the Nusselt number
scales as ∼Ra1=5 with a transition to ∼Ra1=4 for large Pr
[Fig. 3(a)]. For Re, which is evaluated as ðu · uÞ1=2L=ν,
holds Re ∼ Ra2=5 [Fig. 3(c)]. Here, the bar denotes the time
and volume average. For small Pr, the Pr dependence of the
mean heat flux is Nu ∼ Pr1=10 [Fig. 3(b)], while for large Pr
the Nusselt number is independent from Pr. Finally, the
Reynolds number behaves as Re ∼ Pr−4=5 for smaller Pr
and as Re ∼ Pr−1 for larger Pr [Fig. 3(d)].
The DNS results can be understood as follows. As

laminar flows are considered here, the relation between
Nu and Re≡ LU=ν, where U is the representative velocity
of the large-scale flow (wind), can be obtained by balancing
the terms in the thermal BL equation [13,19]

ux∂θ=∂xþ uz∂θ=∂z ¼ κ∂2θ=ð∂zÞ2: ð3Þ
This yields UΔ=L ∼ κΔ=λ2θ. Here, λθ is the (slope) thick-
ness of the thermal BL, which scales as λθ ∼ L=Nu. The last
two relations lead to

Nu ∼ Re1=2 Pr1=2 : ð4Þ

The above relation between Nu, Re, and Pr is supported by
our DNS results for laminar HC. In Figs. 4(a) and 4(b), the
corresponding Ra and Pr dependences of NuRe−1=2 are
presented, which are in full agreement with (4).
In order to obtain the second scaling relation, in addition

to (4), we follow the Grossmann and Lohse [13] approach
for the case of laminar thermal convection. The balance of
ϵu, which is the time- and volume-averaged kinetic dis-
sipation rate ϵu ≡ ν

P
i;jð∂uj=∂xiÞ2, to its estimated BL

contribution gives ϵu ∼ ðνU2=λ2uÞðλu=LÞ, where λu is the
thickness of the viscous BL near the bottom plate. This,

FIG. 1. Scheme of the studied HC setup together with the streamlines for Ra ¼ 1010 and Pr ¼ 1, as obtained in the DNS. 1=10 of the
bottom is heated (left, T ¼ Tþ, red), while the other 1=10 of the bottom is cooled (right, T ¼ T− < Tþ, blue). The top and side walls and
the rest of the bottom are adiabatic. Cross sections of the temperature snapshots are given below for x ¼ 0, x ¼ 0.05L (at the center of
the heated bottom part), x ¼ 0.25L, x ¼ 0.5L, x ¼ 0.75L, and x ¼ L.

FIG. 2. Sketch of the phase diagram in the (Ra, Pr) plane for the
laminar regimes Il and I�l [28], together with the conducted DNS.
The yellow stripe shows the transition from Il and I�l, with a
slope Pr∼Ra1=2. Symbols reflect the computational meshes in
(x,y,z), used in the DNS: 256 × 32 × 48 (filled circle), 512 ×
64 × 96 (filled diamond), 1024 × 90 × 192 (filled square).

PRL 116, 024302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

024302-2



together with λu=L ∼ Re−1=2 for laminar flows (see Sec. 39
in Ref. [29] and Ref. [30]), leads to

ϵu ∼ ðν3=L4ÞRe5=2: ð5Þ

The time and volume average of (2) in combination with
∇ · u ¼ 0 gives h∂θ=∂ziz¼0 ¼ 0, where h·iz denotes the

time and surface average at the height z. This, together with
the average of (2) in time and over S × ½0; z� for any
z ∈ ½0;H�, yields huzθiz ¼ κh∂θ=∂ziz. Integration of this
relation over z ∈ ½0;H� leads to

uzθ ¼ κðhθiz¼H − hθiz¼0Þ=H ¼ BðΓ − 1ÞκΔ=L; ð6Þ

where B is a certain constant 0 < B ≤ 1. Note that B ¼ 1
only if hθiz¼H ¼ Δ=2 and the temperature of the bottom
between Sþ and S− equals ð−Δ=2Þ. Multiplying (1)
scalarly by u and further integrating in time and over
the domain and taking into account (6), we obtain

ϵu ¼ αguzθ ¼ BðΓ − 1ÞαgκΔL−1

¼ ν3L−4BðΓ − 1ÞRaPr−2: ð7Þ

The above relation is also fully supported by our numerical
results, presented in Figs. 4(c) and 4(d). As ðL4=ν3ÞϵuRa−1
is independent from Ra [Fig. 4(c)] and depends on Pr as
∼Pr−2 [Fig. 4(d)], from this we conclude that the factor B
in (7) is a constant, which is independent from Ra and Pr
and can depend only on the cell geometry. For the
considered HC setup, our DNS show that the value of
BðΓ − 1Þ is about 2.
Thus, from (4), (5), and (7), one obtains the scalings in

the laminar regime in HC:

Re ∼ Ra2=5Pr−4=5; ð8Þ

Nu ∼ Ra1=5Pr1=10: ð9Þ

By analogy to the notation in the Grossmann-Lohse theory
for RBC [13], this scaling regime is denoted as Il, where
the subscript l stands for low-Pr fluids.

FIG. 4. (a),(c) Ra dependences and (b),(d) Pr dependences of
(a),(b) NuRe−1=2 and (c),(d) ðL4=ν3ÞϵuRa−1, as obtained in
the DNS for (a),(c) Pr ¼ 0.1 (dotted circle), Pr ¼ 1 (upward
triangle), Pr ¼ 10 (dotted square) and for (b),(d) Ra ¼ 109

(diamond) and Ra ¼ 1010 (downward triangle). The upper
figures support (4), while the lower figures illustrate the correct-
ness of the estimate (7).

FIG. 3. (a),(c) Ra dependences and (b),(d) Pr dependences of (a),(b) the Nusselt number and (c),(d) the Reynolds number, as obtained
in the DNS for (a),(c) Pr ¼ 0.1 (dotted circle), Pr ¼ 1 (upward triangle), Pr ¼ 10 (dotted square) and for (b),(d) Ra ¼ 109 (diamond)
and Ra ¼ 1010 (downward triangle). The DNS results support the scalings in the regime Il (solid lines) [Eqs. (8) and (9)] and transition
to I�l (dotted lines) [Eqs. (11) and (12)]. In (b), the scaling ∼Pr1=5 (dash-dotted line) is given for comparison and is not supported
by the DNS.
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With decreasing Ra, the BL thickness λu generally
increases. Because of the geometrical restrictions, the
growth of the BL thickness is limited and λu saturates to
a certain bounded value. In this case, the BL contribution to
the mean kinetic dissipation rate scales as ϵ̄u ∼ ðνU2=L2Þ,
which yields

ϵu ∼ ðν3=L4ÞRe2: ð10Þ

From (4), (7), and (10), it follows that

Re ∼ Ra1=2 Pr−1; ð11Þ

Nu ∼ Ra1=4 Pr0 ð12Þ

in that particular region of the (Ra, Pr) plane. This scaling
regime is denoted as I�l in Fig. 2.
The slope of the transition region in the (Ra, Pr) plane,

between the laminar regimes Il and I�l, is determined by
matching the Nusselt numbers in these neighbor regimes.
Thus, from Eqs. (9) and (12), we obtain the slope of the
transition region between the regimes Il and I�l, which is
Pr∼Ra1=2. The location of the transition region is high-
lighted by a stripe in the (Ra, Pr) plane in Fig. 2 and is
estimated from the DNS data, by considering the changes
in the Nu(Ra, Pr) and Re(Ra, Pr) dependences. Note that
the transition is smooth and can be affected by the geometry
of particular HC setups.
To conclude, we studied in the DNS laminar HC and

found that Re ∼ Ra2=5 Pr−4=5, Nu ∼ Ra1=5 Pr1=10 with a
transition to Re ∼ Ra1=2 Pr−1, Nu ∼ Ra1=4 Pr0 for large
Pr. Investigations of further anticipated scaling regimes
for unsteady and turbulent HC flows [28] are beyond the
scope of this Letter and are the subject of forthcoming
experimental and numerical studies.
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