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We study distributions of the ratios of level spacings of rectangular and Africa-shaped superconducting
microwave resonators containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs).
The high-precision measurements allowed the determination of, respectively, all 1651 and 1823
eigenfrequencies in the first two bands. The resonance densities are similar to that of graphene. They
exhibit two sharp peaks at the van Hove singularities which separate the band structure into regions with a
linear and a quadratic dispersion relation, respectively. In the vicinity of the van Hove singularities we
observe rapid changes in, e.g., the wave function structure. Accordingly, we question whether the spectral
properties are there still determined by the shapes of the DBs. The commonly used statistical measures are
no longer applicable; however, we demonstrate in this Letter that the ratio distributions provide suitable
measures.
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Introduction.—The focus of the experiments with micro-
wave photonic crystals [1] reported in this Letter were the
spectral properties of finite-size graphene sheets [2,3],
particularly in the vicinity of the van Hove singularities
[4] (vHSs) exhibited by the density of states (DOS) [3,5,6].
Graphene, a monoatomic layer of carbon atoms arranged on
a honeycomb lattice, has exceptional electronic properties
that stem from the shapes of its conduction and its valence
band. They touch each other conically at the six corners of
the hexagonal Brillouin zone constituted by two indepen-
dent Dirac points (DPs) denoted by K�. Previous studies
focused on the energy region around the DPs, where the
dispersion relation is linear and, thus, graphene exhibits
relativistic phenomena [2,3,7–9]. The band structure, how-
ever, becomesmore complexwith increasing energy, and the
dispersion relation eventually changes from linear to quad-
ratic [10]. The transition takes place at its saddle points, the
M points, corresponding to the vHSs in the DOS. They
generally occur in two-dimensional crystals with a periodic
structure [4,11–19] and give rise to logarithmic divergences
in the DOS. As a consequence, arbitrarily weak interactions
can produce large effects in the electronic behavior of
graphene. Once the Fermi energy approaches a vHS, as,
e.g., in hole-doped cuprates, the presence of the singularity
may lead to an enhancement of ferromagnetism, antiferro-
magnetism, or superconductivity [20–25]. The vHS, in fact,
is a topological critical pointwhere a quantumLifshitz phase
transition takes place [26–32].
Tight-binding model (TBM) calculations revealed that,

similarly, the wave function structure varies rapidly in the
vicinity of the vHSs. Consequently, it is not obvious that in
the vicinity of the vHSs the spectral properties only depend
on the shape of the DB (as they do close to the DPs and the
band edges [10]). A prerequisite for the applicability of
commonly used statistical measures for the investigation of

the spectral properties is the unfolding, i.e., the rescaling of
the levels to mean spacing one. This is not possible close
to the vHSs. The main objective of the present Letter is thus
to experimentally study, close to the vHSs, the spectral
properties of graphene flakes (dots) in terms of the
dimensionless ratios of level spacings [33,34]. This was
not hitherto possible, because of the required precision of
the measurements due to the high level density. Here, we
exploited the fact that the peculiar shape of the first two
bands of graphene arises due to the symmetry properties of
its honeycomb structure, which is formed by two inter-
penetrating triangular lattices with threefold symmetry.
Indeed, the shape has been reproduced using two-dimen-
sional electron gases, molecular assemblies, ultracold
atoms [35–39], and photonic crystals [30,40–46], or,
generally, systems referred to as artificial graphene [47].
Furthermore, experimental studies have been performed
with graphene quantum dots, so-called graphene billiards
[48–52]. We performed high-resolution measurements with
superconducting macroscopic-size microwave Dirac bil-
liards (DBs) [10,43] that were in the shape of a rectangle
and the African continent [53–55], respectively. In [10] we
analyzed the spectral properties of graphene near the K�
points and around the center of the first Brillouin zone, i.e.,
the Γ points at the band edges. Our experiments were
further motivated by the inconsistent experimental [49] and
numerical [54–59] results for the spectral properties of
Africa-shaped graphene billiards.
Experimental setup and spectral properties.—A photo-

graph of the Africa-shaped microwave DB is shown on the
rhs of Fig. 1. The DBs consisted of a basin and a lid made
from brass plates. The basin contained a photonic crystal
which was constructed by milling ≈900 metal cylinders
arranged on a triangular grid out of a brass plate. The lattice
constant, i.e., the distance between neighboring cylinders,
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was aL ¼ 12 mm and aL ¼ 8 mm, respectively, and
the radius of the cylinders was R ¼ aL=4. To attain
superconductivity at liquid helium temperature, i.e., at
TLHe ¼ 4.2 K, the lid and the basin were coated with lead,
which has a critical temperature Tc ¼ 7.2 K. The height of
the resonators was d ¼ 3 mm and the range of excitation
frequencies f of the microwaves that were coupled into
the resonator was chosen as 0 ≤ f ≲ 50 GHz. Up to the
maximal frequency the electric field modes are described
by the scalar Helmholtz equation with Dirichlet boundary
conditions at the walls of the basin and the cylinders. This
equation is mathematically equivalent to the Schrödinger
equation of a quantum billiard of the same shape containing
circular scatterers at the positions of the latter [60,61]. The
honeycomb structure of the DBs is generated by the voids
at the centers of the triangles formed by, respectively, three
of the cylinders; see insets of Fig. 2. The corresponding
empty quantum billiard (QB) is obtained by removing the

cylinders [60,61]. We chose DBs with the shapes of a
rectangle and of Africa because their classical dynamics
are, respectively, fully integrable and fully chaotic with no
nongeneric contributions from bouncing-ball orbits [62].
The choice of the latter shape was motivated by the seminal
work on neutrino billiards [53].
Figure 1 shows a transmission spectrum of the Africa-

shaped DB. Below the frequency of the lower band edge at
flBE ¼ 29.84 GHz no resonances were detected, and above
the upper one at fuBE ¼ 45.52 GHz a second broad band
gap is observed. In between a narrow gap of low resonance
density is clearly visible, which separates the first and
second band. It is situated around the frequency fD ¼
35.32 GHz of the DP. The corresponding frequency values
for the rectangular DB are provided in Ref. [10]. The
positions of the resonances yield the eigenfrequencies fi of
the microwave DBs. Because of the high quality factor
Q≳ 5 × 105 of the superconducting microwave resonators,
complete sequences of, in total, 1651 and 1823 eigen-
frequencies could be identified in the first two bands of
the rectangular and the Africa-shaped DB, respectively.
Figure 2 shows their integrated density (upper panels) and
the density of their eigenfrequencies (lower panels). The
latter corresponds to the DOS per unit cell [3,5,6]. It
resembles that of graphene [3,5,63] with a minimum at the
Dirac frequency. The two sharp peaks at the frequencies of
the M points evolve into logarithmic vHSs with increasing
size of the sheet. The DOS of the Africa-shaped DB, in
addition, exhibits a slight bump above the Dirac frequency,
that is, an accumulation of eigenfrequencies. They corre-
spond to edge states that are localized at the zigzag edges
formed by the void structure [41,58].
In the regions close to the band edges, the eigenfre-

quencies of the DBs are directly related to the eigenvalues
of the associated QB [10]. These observations were
corroborated by TBM [5,64] calculations for the honey-
comb lattice formed by the voids inside the DBs. In Fig. 3
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FIG. 1. Transmission spectrum (lhs) in the frequency range of
the first and second bands of the Dirac billiard shown in the
photograph with the lid removed (rhs). It has the shape of the
continent of Africa and contains ≈900 metal cylinders arranged
on a triangular lattice. A region of low resonance density around
the DP is clearly visible.
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FIG. 2. Integrated resonance density (upper panels) and reso-
nance density (lower panels) of the rectangular (left part) and the
Africa-shaped (right part) DBs (black). The insets show a
schematic view of the corresponding DB. The red (gray) and
blue (dark gray) dots mark the voids between the metal cylinders
of the photonic crystal situated at the sites of the two interpen-
etrating triangular lattices.

FIG. 3. Computed intensity distributions of the wave functions
of graphene sheets with the same honeycomb structure as that
formed by the voids (see insets of Fig. 2) inside the rectangular
(upper row) and the Africa-shaped DB (lower row), close to a
band edge (left panels), a vHS (middle panels), and the DP (right
panels). Here, red (gray) and blue (dark gray) correspond to a
maximal and a vanishing intensity, respectively.
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we show for each DB a computed wave function intensity
distribution in the vicinity of a band edge (left panels).
They are identical with those of the QB. This similarity
holds for the first ≈250 and ≈90 eigenstates of the
rectangular and the Africa-shaped DB counted from the
band edges, respectively. For the latter, the number is
smaller because of the deviation of its curved shape from
that of the honeycomb lattice fitted into it. In the region
around the DP, we found a linear interdependence between
the eigenfrequencies of the DBs and the eigenvalues of
the graphene billiard [58] of the corresponding shape. The
associated wave functions shown in the right panels of
Fig. 3 exhibit no structure. This is in accordance with the
low-energy approximation for graphene, which implies a
diverging effective wavelength. The intensity, in fact, is
nonvanishing only at the zigzag edges [58].
We also investigated the spectral fluctuation properties

of the frequencies ei ¼ jfi − f0j with respect to the band
edges, f0 ¼ flBE; fuBE, and to the DP, f0 ¼ fD [10,65]. For
this, we unfolded the ei by replacing them with the smooth
part of the integrated DOS, ~ei ¼ NsmoothðeiÞ. This pro-
cedure requires an analytical expression forNsmoothðeiÞ. For
QBs, it is given by Weyl’s law [66]; however, this is not
available for the DBs (see the upper panels of Fig. 2).
Therefore, we studied the spectral fluctuation properties
for short sequences of 100 eigenfrequencies and obtained
NsmoothðeiÞ in terms of the polynomial best fitting the
experimental NðeiÞ. We came to the conclusion that in both
the regions around the Γ points and the DPs, the spectral
properties coincide with those of the corresponding QB.
The latter are only determined by the shape of the billiard,
in accordance with the Bohigas-Giannoni-Schmit conjec-
ture [67–70] for integrable and for time-reversal invariant
chaotic systems. For the Africa-shaped DB we had to
exclude the eigenfrequencies of the edge states; see Fig. 1.
A drawback of these statistical measures is that they require
an unfolding of the eigenvalues. Consequently, they cannot
be used to analyze the spectral properties in the vicinity of
the vHSs.
Ratio distributions.—About ten years ago, a new statis-

ticalmeasurewas proposed byOganesyan andHuse [33] that
characterizes the correlations between consecutive spacings
of adjacent eigenvalues or, as in our case, eigenfrequencies of
a DB. The authors considered the distribution Pð~rÞ of ~ri ¼
min ðri; 1=riÞ with ri ¼ ðeiþ1 − eiÞ=ðei − ei−1Þ. Recently,
the distribution of the ratios ri and the kth overlapping ratio
distribution PðrkÞ of spacings between the kth nearest
neighbors rki ¼ ðeiþkþ1 − eiÞ=ðeiþk − ei−1Þwere introduced
[34,71]. In Ref. [34], a Wigner-like [65] approximation was
derived for the ratio distribution of the Gaussian orthogonal
ensemble (GOE) [65,72,73], PGOEðrÞ≃ 27=8ðrþ r2Þ=
ð1þ rþ r2Þ5=2, that for Poissonian random numbers [33]
reads PPoissonðrÞ ¼ 1=ð1þ rÞ2. Here, the GOE and Poisson
statistics describe the spectral properties of generic chaotic
and integrable systems [67–70], respectively. The accuracy

was further improved and analytical expressions were given
for the kth overlapping ratio distribution in Ref. [71].
In Ref. [74] the transition from Poissonian to GOE statistics
was investigated thoroughly for the ratio distributions PðrÞ
and Pð~rÞ in terms of the averages hri and h~ri. The values
for the limiting cases are hriPoi ¼ ∞, h~riPoi ¼ 0.39 and
hriGOE ¼ 1.75, h~riGOE ¼ 0.54. The authors came to the
conclusion that the critical values for the transition from
Poisson to the GOE are hricrit ¼ 2.0, h~ricrit ¼ 0.5.
The quantities ~ri, ri, and rki are dimensionless.

Therefore, as long as the DOS does not vary on the
scale of the average spacing, no unfolding is needed
[33,74–77]. An objective of the present Letter was to test
whether their distributions provide a statistical measure
that is sensitive to the behavior of the classical dynamics.
Here, the vicinity of the sharp peaks in the DOS was of
particular interest, because there the DOS, and thus the
average spacing, varies rapidly. Indeed, the latter becomes
extremely small, so that the applicability of the ratio
distributions becomes questionable. We demonstrate,
however, that ratio distributions are employable in our
finite-size systems. In addition, our aim was to give an
answer to the question of whether at the vHSs the spectral
properties are also determined by the shape of the DB,
using our highly precise experimental data.
In Fig. 4, all eigenfrequencies of the DBs shown in the

insets of the lower panels were taken into account. In the
upper panels, the experimental (green histograms) ratio
distributions (left two panels) and the (k ¼ 1)-overlapping
ratio distributions (right two panels) are comparedwith those
for the GOE (full lines) and for a Poisson process (dashed
lines). In order to avoid the dependence on the bin sizes used
for the histograms, we also evaluated the corresponding
cumulative distributions IðrÞ ¼ R

r
0 dr

0Pðr0Þ, shown in the
lower panels (green dots). The distributions coincide with
those of a Poisson process for the rectangular DB, and with

FIG. 4. Left two columns: Ratio distributions (upper panels,
green histograms) and their cumulative distributions (lower
panels, green dots) for all eigenfrequencies in the first two bands
of the rectangular and the Africa-shaped DB (see insets), in
comparison to those for a Poissonian statistics (dashed lines) and
the GOE result (full line). Right two columns: Same as the left
columns, but for the (k ¼ 1)-overlapping ratio distributions.
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the GOE statistics for the Africa-shaped one, in accordance
with the findings for the fluctuation properties of the
unfolded eigenfrequencies. The agreement, actually, is so
good that the curves lie on top of each other. The average
values, hrirect ¼ 2.70, h~rirect ¼ 0.40 and hriAfrica ¼ 1.75,
h~riAfrica ¼ 0.53, are close to those of the corresponding
theoretical distribution.
We also investigated the statistical properties of the ratios

separately for sequences of 100 eigenfrequencies close to
the band edges, around the Dirac frequency and near the
vHSs. At the band edges, the experimental ratio distribu-
tions and the (k ¼ 1)-overlapping ratio distributions of the
rectangular and the Africa-shaped DB agree well with
the Poisson and the GOE curves, respectively. The same
holds for the averages, hrirect ¼ 2.63; h~rirect ¼ 0.41 and
hriAfrica ¼ 1.77, h~riAfrica ¼ 0.52. Figure 5 shows the exper-
imental (green histograms and dots) ratio distributions
(upper part) and the (k ¼ 1)-overlapping ratio distributions
(lower part) in regions above the DP and below the
upper vHS; see insets. In the Dirac region we omitted
the first 10 eigenfrequencies below and above the DP,
because they yield nongeneric contributions (as can be
deduced from the features of the intensity distributions);
see right panels of Fig. 3. We obtained a good agreement
with the Poissonian statistics for the rectangular DB and

also, interestingly, for the Africa-shaped one. In accordance
with these observations, hrirect ¼ 2.41, h~rirect ¼ 0.41 and
hriAfrica ¼ 2.08, h~riAfrica ¼ 0.46. For the latter, the
deviation from the expected GOE behavior is attributed
to the edge states present above the DP, see Fig. 2. Their
intensity distributions are localized at the zigzag edges
and, thus, exhibit a nongeneric behavior. Only after
their omission is a very good agreement with the GOE
obtained (red histograms and dots). Then, the average ratios
equal hriAfrica ¼ 1.76, h~riAfrica ¼ 0.52, indicating that the
classical dynamics is chaotic [74]. Below the upper vHS,
we obtained very good agreement with the GOE for the
Africa-shaped DB. For the rectangular DB, an agreement of
the ratio distribution with the Poissonian statistics is only
achieved after omitting the≃20 eigenfrequencies fi closest
to the vHS. Then, we obtain hrirect ¼ 2.19, h~rirect ¼ 0.44;
otherwise, hrirect ¼ 1.86, h~rirect ¼ 0.49, in accordance
with our observation that the ratio distribution is closer
to Poisson statistics and to the GOE, respectively. This is
again attributed to nongeneric contributions visible in the
wave function structure. Examples are shown in the middle
panels of Fig. 3. In both DBs the wave functions are
localized along zigzag edges within the hexagonal void
structure. In the rectangular DB they are nonvanishing
along classical trajectories corresponding to particles
that bounce back and forth at the two shorter sides of
the rectangle. In all considered cases, the (k ¼ 1)-
overlapping ratio distributions obtained by including
(green) and omitting (red) nongeneric contributions are
indistinguishable. Finally, we note that the highly
precise data from the superconducting billiards were a
prerequisite for a first rigorous test of the ratio distribution
method.
Conclusions.—We measured with unprecedented accu-

racy the eigenfrequencies of two DBs: a classically regular
rectangular billiard and a chaotic Africa-shaped DB. As in a
graphene sheet or, generally, in artificial graphene, the
smooth part of the DOS of the DBs has a complicated
structure and exhibits sharp peaks at the vHSs. There, the
electronic properties of graphene and, likewise, the wave
function structures calculated with the TBM, change
rapidly with increasing frequency. We demonstrated that,
nevertheless, the spectral properties of the DBs are only
determined by their shapes. In the vicinity of the vHSs,
the commonly used statistical measures are not applicable.
We, therefore, analyzed the ratio distribution and the
(k ¼ 1)-overlapping ratio distribution and demonstrated
that they provide useful statistical measures for the spectral
properties.

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative
Research Center 634. One of us (C. B.) is grateful for
the hospitality received during an internship at the
Institute of Nuclear Physics of the Technical University
of Darmstadt.

FIG. 5. Upper part: Experimental ratio distributions (upper
panels, green histograms) and their cumulative distributions
(lower panels, green dots) above the Dirac frequency and below
the upper vHS for the rectangular DB and the Africa-shaped one
(see insets), in comparison to those for a Poissonian statistics
(dashed lines) and the GOE result (full line). The red histograms
show distributions after extracting nongeneric contributions.
Lower part: Same as for the upper part, but for the (k ¼ 1)-
overlapping ratio distributions.
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