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Detecting a single photon without absorbing it is a long-standing challenge in quantum optics. All
experiments demonstrating the nondestructive detection of a photon make use of a high quality cavity. We
present a cavity-free scheme for nondestructive single-photon detection. By pumping a nonlinear medium
we implement an interfield Rabi oscillation which leads to a ∼π phase shift on a weak probe coherent laser
field in the presence of a single signal photon without destroying the signal photon. Our cavity-free scheme
operates with a fast intrinsic time scale in comparison with similar cavity-based schemes. We implement a
full real-space multimode numerical analysis of the interacting photonic modes and confirm the validity of
our nondestructive scheme in the multimode case.
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Unlike “demolition,” detection quantum nondemolition
(QND) or “nondestructive” photon detection ideally avoids
any absorption of the photons during the measurement.
It is essential for applications in quantum information
processing.
Because of the ultrastrong coupling between a high

quality microwave (mw) cavity and a qubit, nondestructive
single-photon detection has been demonstrated in mw
cavity quantum electrodynamics (QED) [1–7]. A break-
through result demonstrated a π phase shift of an atom
resonantly coupled to a high-Q mw cavity after a full-cycle
Rabi oscillation (RO) [4]. However, the experimental
verification of the nondestructive detection of an optical
photon in an optical cavity has only been reported very
recently [8]. So far, all experimental proposals, except for
the microwave proposal by Sathyamoorthy et al. [9] using a
chain of superconducting transmons strongly coupled to a
propagating mw photon, detect a mw or optical single
photon by exploiting sophisticated cavity-QED designs.
Nondestructive detection of a traveling single photon is a

key element in quantum information processing but is even
more challenging compared to the detection of a single
photon in a cavity. Although QND measurement of photons
using cross-phase modulation (XPM) in a Kerr nonlinear
medium has been proposed for decades [10,11], it has been
widely doubted [12–14] when a continuous-time multimode
model [13], or a finite response time [14], is considered and
has never been demonstrated experimentally at the single-
photon level. In general, in all proposed XPM based QND
schemes the probe field’s phase shift induced by a single
signal photon is either too small to be detected or suffers from
excess noise. Such XPM schemes use an “Ising”-type
interaction, â†s âsâ

†
pâp, between the signal and probe modes:

âs and âp. However our scheme exploits a “Rabi”-like
oscillation between the modes when we consider a tunable
three-mode interaction âaâ

†
pâ

†
s þ â†aâpâs. We find this

Rabi-like dynamics overcomes virtually all of the difficulties
present in XPM-basedQND schemes. Belowwe analyze our
concept using two types of descriptions: The first description
uses a single-modemodel that is able to include the effects of
higher Fock states but neglects the spatiotemporal dynamics
of the propagating light fields. It also gives deeper insights
than the second description. In the latter we carefully model
the spatial propagation of the light fields but restricted to
single photon wave packets. Both descriptions confirm the
operation of the QND protocol under different settings.
We begin by discussing the main concept for the

nondestructive detection of a single photon by describing
the setup as depicted in Fig. 1(a). As in [15], we strongly
pump a nonlinear optical medium to create a standard
three-wave-mixing Hamiltonian. In this setup, the non-
linear coupling among the auxiliary mode âa, the
signal field âs and the probe mode âp is enhanced and

FIG. 1. Schematic for detection of a single traveling photon.
(a) Configuration for nondestructive detection of a single trav-
eling photon in a nonlinear medium. Aweak probe coherent field
jαpi (green line) interacts with the signal and auxiliary modes âs
(blue line) and âa (magenta line) in a third-order nonlinear (χð3Þ)
medium. The probe field, after a full Rabi oscillation (interaction
of 2π), is displaced via a highly reflective beam splitter and then
is detected. (b) Level diagram describing the interaction between
the signal, auxiliary, and probe photons.
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dynamically controlled by the strong pump (control) field
Ec with frequency ωc and propagation constant kp. The
modes âa, âs, and âp are assumed to have the central
frequencies ωa, ωs, and ωp, propagation constants ka, ks,
and kp, and durations τa, τs, and τp, respectively. We
assume that the three modes suffer zero dispersion over
their individual bandwidths and propagate with constant
group velocities. This is reasonable if the duration of the
signal and probe fields are long enough to span a narrow
bandwidth. By properly choosing the length L of the
nonlinear medium and controlling the intensity of the
pumping, we can enable an accumulated interaction of
2π among the three fields âa, âs, and âp as they propagate
through length L of the medium. The interaction
Hamiltonian describing the three-wave mixing among
the fields in the medium (along the z direction) âa, âs,
and âp takes the form ðℏ ¼ 1Þ

ĤI ¼
gðEcÞ
2

âaâ
†
pâ

†
s þ g�ðEcÞ

2
â†aâpâs; ð1Þ

where gðEcÞ indicates the nonlinear coupling strength that
can be tuned by the intensity of the pump field Ec.
Next we explain how to induce a substantial phase shift

in the weak probe field to distinguish between the vacuum
and single-photon states of the signal field; see Fig. 1(b).
We arrange that the auxiliary field is initially in the vacuum
state j0ia. The signal field can be either the vacuum state
j0is or a single-photon state j1is. The weak probe coherent
field jαpi copropagates with the signal mode and the
pumping field along the z direction. We assume that αp ≪
1 such that jαpi ≈ j0ip þ αpj1ip. We schematically depict
the interaction between the photons by the level diagram
shown in Fig. 1. For a weak probe field αp ≪ 1, the joint
quantum state j0p; 0ai is mostly populated, while the
occupation of the state j1p; 0ai is approximately
jαpj2 expð−jαpj2=2Þ. The signal field drives the transition
j1p; 0ai↔j0p; 1ai. To provide a simple but transparent
picture for our idea we consider the ideal case of ωc þ
ωa ¼ ωp þ ωs and kc þ ka ¼ kp þ ks. If gðEpÞL ¼ 2π
and a single photon in the signal field, i.e.,
â†s jØi ¼ j1is, (where jØi is the vacuum), the signal field
will drive the transition j1p; 0ai → j0p; 1ai and then bring
back the occupation to j1p; 0ai. In this case, the state
j1p; 0ai suffers a π phase shift and therefore the probe field
becomes jΨit ¼ j0pi − αpj1i ≈ j − αpi. For a vacuum
signal field j0si, the probe field has no phase shift after
propagating through the medium. As a result, the trans-
mitted field is jΨit ¼ jαpi. In our numerical simulation, the
transitions jðnþ 1Þp; 0ai → jnp; 1ai involving higher Fock
states with np > 0 are also taken into account by truncating
the probe field at a large Fock state.
To detect the change in the probe field, we displace the

probe field after it has propagated and transmitted through
the nonlinear medium by a coherent field j − αpi. Then the

density matrix of the detected field is related to that of the
transmitted field by ρDð−αpÞ ¼ Dð−αpÞρðLÞDðαpÞ [16],
where DðαpÞ is the displacement operator. To do so, we
inject a large coherent field j − ξαpi (ξ ≫ 1), in to a highly
reflective beam splitter [ð1 − ηÞ∶η] with a reflectivity of
η > 0.99, together with the probe field, so that the trans-
mission is j − αpi [17]. In doing so, the detector will
measure a coherent field jΨiD ¼ j − 2αpi if a single photon
is present, but no photon (jΨiD ¼ j0pi) is detected if no
signal photon is input into the system.
We next evaluate the performance of our single-photon

detection. We first treat the propagation of the optical fields
via a singlemode approach governed by a quantumLangevin
equation by replacing the time t with the position z

∂ρ=∂z ¼ −i½ĤI; ρ� þ Lρ; ð2Þ

where ρ is the density matrix of the system at the position z,
and Lρ takes into account the possible decoherence, Lρ ¼P

j¼a;p;sðγj=2Þð2âjρâ†j − â†j âjρ − ρâ†j âjÞ where γj is the
loss per meter of the jth mode. Numerically solving the
quantum Langevin equation, one can calculate the trans-
mitted state of the probe field and the detected state. As a test,
the Langevin equation reproduces all the results shown in
Fig. 2(a) of the work [15]. We will implement a more
thorough multimode propagation analysis later on but for
now we take γa ¼ γp ¼ γs ¼ 10−3 radm−1.
We consider the click at the detector as evidence of a

single photon in the signal mode. If no click is observed,
then we consider no photon to be present in the signal
mode. We assume perfect quantum efficiency of the
detector. Thus the vacuum state of the signal mode yields
no click on the detector with 100% probability. When a
single photon is injected into the system, the state presented
to the detector is jΨiD ¼ j − 2αpi. This state can generate a
click with a certain probability but the small vacuum
element in jΨiD can lead to a detection failure of the
signal photon with a probability Perr. Therefore, taking

FIG. 2. Wigner functions of the transmitted and detected states
for a probe field with jαpj2 ¼ 0.6. (a) Transmitted signal state
jΨis after interacting for the length of the media; (b) transmitted
probe field jΨit after interacting for the length of the media;
(c) detected state jΨiD of probe field presented to detector. The
concentric circles show the Wigner function contours of the
detection field in the case of an input signal vacuum state.
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αp ∈ ℜ, this error probability is [18] given by PerrðαpÞ ¼
Tr½j0pih0pjDð−αpÞρðLÞDðαpÞ� ≈ e−4jαpj2 . We note that this
error decreases exponentially with αp but we will see below
that the nondestructiveness of the protocol also degrades
with increasing αp. If we explore an N-cascade detection
configuration [9,15], and consider a single click on any
detector as an indicator for a single photon in the signal
mode, then the error probability of failing to detect the
signal photon decreases as ∼PN

err. This error decreases
rapidly to vanishing small values as N increases.
Another parameter indicating the “nondestructive” per-

formance of the detection is the fidelity of the signal
single-photon state F ðαp; LÞ ¼ Tr½ρðαp; LÞj1sih1sj�, after
detection. The value of F can be evaluated numerically and
for low values of αp we find it close to unity.
Next we estimate the performance of our system by

numerically simulating the mode master equation (2) and
truncating the Hilbert subspace of probe field up to j14i. For
a vacuum signal state j0si, the detected field after the beam
splitter is trivial, being the initial probe vacuum field j0pi.
Thus we are primarily interested the detection field jΨiD in
the case of a single-photon signal input j1si. First, for a
certain probe field of jαpj2 ¼ 0.6, and a single-photon signal
field j1is, we investigate to what extent the phase of the
transmitted probe field can be shifted while the signal field
remains unchanged. Figure 2 shows theWigner functions of
the transmitted and detected field. In Fig. 2(a), the Wigner
function indicates the transmitted signal field at z ¼ 2π is
almost a single photon state j1is. The fidelity is evaluated to
be F ≈ 0.9. The transmitted probe field jΨit has a compli-
cated Wigner function which includes a region with a large
negative value. It means that jΨit is a quantum field at
z ¼ 2π because the initial probe field includes considerable
occupation in higher Fock states jnpi with np > 1. As a
result, the squared overlap of the transmitted probe fieldwith
the idea one, jh−αpjΨitj2, is about 0.73; see Fig. 2(b). After
displacing by j − αpi with the beam splitter, the Wigner
function [Fig. 2(c)] moves to the left by αp with the result
that the detected field jΨiD can bewell distinguished from a
vacuum detected field of j0pi (jh0pjΨiDj2 ≈ 0.09 yielding a
Helstrom bound of 0.02 [19,20]).
During the time evolution of three modes, the occupation

of the probe field displays Rabi-like oscillation as the fields
propagate through the medium. The occupation of the
probe field first transfers to the auxiliary mode and then
returns to the probe field at gz ¼ 2π. The fidelity of the
signal mode also oscillates with the propagation distance z.
This process repeats every gz ¼ 2π. It is found that, given a
small jαpj2, the phase of the probe field is shifted by π at
gz ¼ 2π, but the loss of the signal mode is negligible. For
example, when jαpj2 ¼ 0.6, the probe field acquires a
phase shift of ∼π at gz ¼ 2π, while an occupation of 0.894
in the signal mode yields a high fidelity for nondemolition
F ≈ 0.9. As jαpj2 increases the fidelity of the signal mode

decreases gradually. If jαpj2 increases to 0.8, the non-
demolition fidelity F drops to 0.84. The signal mode is
more greatly modified by a stronger probe field because the
more populated higher Fock states with np > 1 interact
dispersively with the signal mode [21].
A “good” single-photon detection requires a high fidelity

F of the signal mode and a small detection error Perr.
Reducing the mean photon number of the probe field can
increase the fidelity of the transmitted signal mode but also
leads to an increase in the detection error because it
provides less signal to the detector. For one measurement,
the error probability Perr ≈ e−4jαpj2 decreases exponentially
as jαpj2 increases. From Fig. 3, this analytic form (blue
line) is in good agreement with the numerical results
(circles) for small jαpj2. The numerical value of Perr reaches
its minimum 0.09 at jαpj2 ¼ 0.6 and then increases slowly
as jαpj2 increases. On the other hand, the fidelity F
decreases as well. When jαpj2 ¼ 0.6, F ¼ 0.9. An efficient
QND detection requires F=Perr ≫ 1. Thus, a probe field
of jαpj2 ∼ 0.6 is optimal and yields F=Perr ¼ 10. An
N-cascade configuration of the detection unit can reduce
the error possibility to ∼PN

err and relax the requirement
FN=PN

err ≫ 1 [22]. The green line in Fig. 3 provides an
estimate of the N required to achieve PN

err < 5%. Even for a
very weak probe field of jαpj2 ¼ 0.2, four cascaded
detection units can achieve an error probability of
∼3.9% and F 4=P4

err > 23.75 [23].
Above we modeled our scheme using single modes. This

approximate description neglects any spatiotemporal
dynamics of photons. Next we go far beyond this approxi-
mation by numerically simulating the interaction of con-
tinuous-time multimode quantum wave packets propagating
in real space. For our purpose of single-photon QND
detection, we only need to address the fidelity and phase

FIG. 3. Detection error Perr, and fidelity F, as a function of the
probe field. Blue line indicates the analytic estimation. Circles
show the numerical data for different probe fields, while the
diamond data (with regard to left vertical axis) show the fidelity
of the transmitted signal mode. The green line (right vertical axis)
gives the number N of cascaded detection units to achieve an
overall detection error PN

err < 5%.
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shift of a photon-pair input state j1p; 1si after propagating a
certain distance. During the propagation of the probe and
signal fields the auxiliary field can be excited. To simulate the
interaction we define an associated wave function
ϕpsðt; zp; zsÞ for the state j1p; 1si, and the wave function
ϕaðt; zaÞ for the auxiliary field state j1ai. These wave
functions imply that the photons j1pi and j1si (j1ai)
appear(s) at zp and zs (za) at time t with probability of
jϕpsðt; zp; zsÞj2 (jϕaðt; zaÞj2). The state of the fields can be
described by a general wave function [24] jϕðt;za;zp;zsÞi¼R
dzaϕaðt;zaÞâ†ajØiþ

RR
dzpdzsϕpsðt;zp;zsÞâ†pâ†s jØi, where

jØi is the vacuum state. We apply a Gaussian input
ϕpsðt;zp;zsÞ¼ð1= ffiffiffiffiffiffiffiffiffiffiffi

πτpτs
p Þe−ðzp−zp;0Þ2=2τ2pe−ðzs−zs;0Þ2=2τ2s , where

zp;0 and zs;0 are the group delays of the probe and signal
wave functions, respectively. For simplicity, we assume
τp ¼ τs ¼ τ. Assuming this product input yields no quantum
(or classical) correlations in the input we have initially,R R

dzpdzsjϕpsð0; zp; zsÞj2 ¼ 1 and
R
dzajϕað0; zaÞj2 ¼ 0.

The evolution of the photonic wave functions is governed by
the partial differential equations (PDEs) [24]

∂ϕps

∂t ¼ −vp
∂ϕps

∂zp − vs
∂ϕps

∂zs −
ig0
2

Z
L

0

fgðza; zp; zsÞϕadza;

∂ϕa

∂t ¼ −va
∂ϕa

∂za −
ig0
2

Z
L

0

Z
L

0

fgðza; zp; zsÞϕpsdzpdzs;

where we assume perfect phase and energy matching Δk ¼
ðkc þ ka − kp − ksÞ ¼ 0 and Δa¼ðωcþωa−ωp−ωsÞ¼0,
respectively. The nonlinear medium is assumed to possess a
spatial nonlocal response distribution [25] fgðza; zp; zsÞ ¼
ð1=

ffiffiffiffiffiffiffiffi
πσ3

p
Þe−½ðza−zpÞ2=2σ2�e−½ðza−zsÞ2=2σ2�, where σ indicates the

finite interaction length. The prefactor of this spatial response
function is not important for experimental implementation
because the coupling strength can be tuned via the pump
laser power. The photon pulses are long enough to assume
that the group velocity of each mode is constant in time
(we assume va ¼ vp ¼ 1). The fidelity of the photon pair

state j1p; 1si is evaluated as ~F ¼ 1
2
j1 −

R R
dzpdzsϕps;

in�ðte; zp; zs; zp;e; zs;eÞϕpsðte; zp; zs; zp;e; zs;eÞj, where
ϕ�
inðte; zp; zs; zp;e; zs;eÞ means the input wave packets

ϕpsðt ¼ 0Þ freely propagating to the output position zp;e
and zs;e. With this definition we expect the fidelity to be
~F ¼ 0when nophase shift is present but ~F ¼ 1 for a π phase
shift. Throughout our simulation, we set σ ¼ 0.2 and the
duration τ ¼ 0.6 in z.
We numerically simulate the time evolution of the

associated wave function ϕps at different positions in real
space using the xmds package to solve the PDEs [26]. Here
the probe and signal wave functions initially have no
correlation yielding a form for ϕps of a 2D symmetric
Gaussian. In Fig. 4(a), the probe and signal wave functions
have the same delay and are assumed to copropagate at
same group velocity, vp ¼ vs ¼ 1. We find that only the

diagonal region of the wave function ϕps has a π phase shift
because the nonlinear interaction occurs only when the
probe and signal photons overlap in space, jzp − zsj < σ. In
Fig. 4(b), the signal pulse enters the medium first and is
followed by the probe pulse (see inset plot). The probe
mode propagates faster than the signal mode. This con-
figuration has been used for XPM to induce a large phase
shift using an Ising type interaction but the resulting fidelity
was poor [27]. In our case, during the propagation the probe
field scans over the whole signal pulse and subsequently
the two fields interact completely with each other. It is
found that the wave function starts to invert when the
leading edge of the probe pulse meets the tail of the signal
pulse. As a result, a π phase shift can be induced after the
probe pulse passes through the entire signal pulse and we
find that the fidelity is very high, with ~F ≈ 1. By compar-
ing two models it can be seen that when the probe field has
at most one photon, a unit fidelity for the transmitted signal
mode is achieved. If the probe contains higher Fock states
then we find that interactions with these higher states
prevents us from achieving perfect nondemolition of the
signal mode.
For a physical implementation of nondegenerate FWM

we consider Rubidium atomic vapor contained within
hollow-core photonic crystal fiber (PCF) [28,29]. This
atomic system with number density of Na ∼
1013 atoms=cm3 can provide a giant nonlinear refractive
index of n2 ∼ 10−6 cm2 W−1 corresponding to a nonlinear
coefficient γ ∼ 108 W−1m−1, nine orders stronger than that
of silica (γ ∼ 0.1 W−1m−1 or n2 ∼ 10−16 cm2W−1 [15])
[30,31]. In detail, we consider the diamond configuration in
85Rb: the 780 nm pump laser drives the transition
5S1=2↔5P3=2 and controls the coupling rate of the effective
three-wave mixing; the auxiliary mode has wavelength
1.362 μm and drives 5P3=2↔6S1=2; the signal and probe
fields have wavelengths 795 nm and 1.324 μm, and drive
transitions 5S1=2↔5P1=2 and 5P1=2↔6S1=2, respectively.
Another laser field with wavelength of 1.48 μm couples to
the transition 5P1=2↔4d3=2. It is used to tune (slow down
20%–80%) the group velocity of the signal pulse. Given a
0.1 W pump laser and Na ¼ 2 × 1011 atoms=cm3, a PCF
with length of 1 m and hollow core diameter of D ¼ 6 μm,

FIG. 4. Evolution of the wave function ϕps for (a) the same
propagating speeds vp ¼ vs ¼ 1 and delay, and (b) different
speeds vp > vs (vp ¼ 1 but vs ¼ 0.6) and different delays, zs0 ¼
−4 and zp0 ¼ −7.6. Inset in (b) shows the positions of input
probe (blue line) and signal (red line) wave functions corre-
sponding to the first red spot.
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we estimate a full Rabi oscillation, gðEcÞL ¼ 2π, can be
achieved for 1 ns signal and probe pulses. These 1 ns pulses
are long enough to neglect the dispersion within PCF [32],
and estimate the mode volume of the pulses using
V ∼ Aeffcτp for simplicity [33].
In conclusion, many researchers have previously unsuc-

cessfully tried to apply cross-Kerr-based schemes using the
“Ising”-type interaction for QND single-photon detection
in the multimode picture [12–14]. Our scheme can circum-
vent such complications using a Rabi-like oscillation in a
cavity-free scheme to detect a single optical photon without
destroying it. In our setup we have induced a π phase shift
in a weak probe field by a traveling single photon in a
nonlinear medium with this single photon remaining
largely unchanged.
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