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For a massless gas with a constant cross section in a homogeneous, isotropically expanding spacetime
we reformulate the relativistic Boltzmann equation as a set of nonlinear coupled moment equations. For a
particular initial condition this set can be solved exactly, yielding the first analytical solution of the
Boltzmann equation for an expanding system. The nonequilibrium behavior of this relativistic gas can be
mapped onto that of a homogeneous, static nonrelativistic gas of Maxwell molecules.
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Introduction.—The relativistic Boltzmann equation plays
a prominent role in understanding the complex nonequili-
brium dynamics displayed by dilute relativistic gases. It has
applications in many areas of physics including, e.g.,
theoretical description of the quark-gluon plasma [1–6],
neutrino transport in supernovae [7,8], and structure for-
mation in cosmology [9–11]. While analytical solutions of
the Boltzmann equation have been thoroughly studied for
homogeneous systems [12–14], solutions for an expanding
system remain to be found even in the nonrelativistic regime.
In the relativistic regime, progress in this direction was

made recently [15–22] using theAnderson-Witting equation
[23], an approximation of the Boltzmann equation that relies
on the relaxation time approximation [24]. In this scheme,
the nonlinear collision kernel of the Boltzmann equation is
replaced by a linearized version that qualitatively describes
the relaxation of the system to equilibrium on a microscopic
time scale. These analyses served to improve our under-
standing of the domain of applicability of a number of
extended hydrodynamic theories used in the description of
rapidly expanding plasmas [15–20], with a focus on the
description of ultrarelativistic heavy-ion collisions.
However, a complete description of dilute gases can be

achieved only by solving the full Boltzmann equation.
While this can be done numerically, simple yet physically
motivated analytical solutions of the Boltzmann equation, if
available, can lead to valuable insights into nonequilibrium
phenomena. In this Letter we take a step in this direction
and derive the first analytical solution of the full Boltzmann
equation for an expanding dilute gas. This is done using the
method of moments [6,25] to calculate the nonlinear
collision term of the relativistic Boltzmann equation for
a massless gas with a constant cross section in a homo-
geneous and isotropically expanding spacetime. The
derived solution describes the expansion-driven deviation
of the particles’ momentum distribution from local thermal
equilibrium as a function of the system’s expansion rate.

We note that the nonexpanding limit of this solution, which
describes the homogeneous relaxation of a relativistic gas
towards equilibrium, is also new.
Boltzmann equation.—We consider a homogeneous

and isotropically expanding system of massless particles
in a Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric [26,27] (the most general homogeneous and isotropic
metric in flat space)

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ: ð1Þ

We note that in this Letter we make the further restriction of
zero global curvature. For a gas of massless particles, the
energy density and the pressure are related as ε ¼ 3p, and
here the scale factor aðtÞ > 0 [27] is a free function that
may be fixed by additional physics assumptions. For the
FLRW metric the nonzero Christoffel symbols are Γi

0j ¼
δijHðtÞ and Γ0

ij ¼ aðtÞ _aðtÞδij, where i; j denote spatial
indices, HðtÞ≡ _aðtÞ=aðtÞ is the Hubble parameter, andffiffiffiffiffiffi−gp ¼ a3ðtÞ, with g being the determinant of the metric in
(1). Even though the fluid flow of this system is locally
static, uμ ¼ ð1; 0; 0; 0Þ, the expanding FLRW geometry
induces a nonzero fluid expansion rate θðtÞ≡ ∂μð ffiffiffiffiffiffi−gp

uμÞ=ffiffiffiffiffiffi−gp ¼ 3HðtÞ.
The dynamics of the single-particle distribution function,

fkðxÞ, is given by the relativistic Boltzmann equation in
curved space [18,19,28–30]

kμ∂μfk þ Γλ
μikλk

μ ∂fk
∂ki ¼ C½f�: ð2Þ

Since the FLRW geometry is based on the assumptions of
spatial homogeneity and isotropy, fk cannot depend on
spatial position x and must be locally isotropic in momen-
tum, depending only on u · k ¼ k0 where for massless
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particles k0 ¼ k=aðtÞ with k ¼ jkj. We therefore write
fkðxÞ ¼ fkðtÞ from here on.
The symmetries of the FLRW metric strongly constrain

the form of the energy-momentum tensor Tμν and particle
4-current Nμ of the matter. Because of local momentum
isotropy the viscous shear-stress tensor and particle dif-
fusion current vanish exactly. Further, the bulk viscous
pressure is zero for massless particles. Therefore, the
conserved currents always take their equilibrium form,
and the time evolution of the energy and particle densities, ε
and n, is fully determined by the conservation laws

∂tnþ 3nHðtÞ ¼ 0; ∂tεþ 4εHðtÞ ¼ 0: ð3Þ

With the initial condition aðt0Þ ¼ 1, they are solved by
nðtÞ ¼ nðt0Þ=a3ðtÞ and εðtÞ ¼ εðt0Þ=a4ðtÞ.
Even though the conserved currents Tμν ¼ εuμuν − pgμν

and Nμ ¼ nuμ take the same form as in local thermal
equilibrium, the system itself does not have to be in
equilibrium. In fact, the local momentum distribution
fkðtÞ is driven away from its local equilibrium form by
an amount proportional to the expansion rate θðtÞ ¼ 3HðtÞ
of the FLRW geometry. However, this process happens
without disturbing the spatial homogeneity and isotropy
of the system and, consequently, there are no out-of-
equilibrium corrections to the conserved currents. A similar
behavior was found in [21,22] in the context of the
relaxation time approximation.
The contributions from the Christoffel symbols in Eq. (2)

cancel exactly, and the equation reduces to

k0∂tfk ¼ C½f�: ð4Þ

Ignoring quantum statistics, the collision term reads

C½f� ¼ 1

2

Z
k0pp0

Wkk0→pp0 ðfpfp0 − fkfk0 Þ; ð5Þ

where
R
k ≡

R
d3k=½ð2πÞ3 ffiffiffiffiffiffi−gp

k0� and Wkk0→pp0 is the tran-
sition rate. To make progress on evaluating (5) we make the
simplifying assumption of isotropic scattering with energy-
independent total cross section σ. Then Wkk0→pp0 takes the
form [28–30]

Wkk0→pp0 ¼ ð2πÞ5 ffiffiffiffiffiffi
−g

p
σsδ4ðkþ k0 − p − p0Þ; ð6Þ

where s ¼ ðkμ þ k0μÞðkμ þ k0μÞ. Thus, the Boltzmann
equation becomes

k0∂tfk

¼ð2πÞ5
2

ffiffiffiffiffiffi
−g

p
σ

Z
k0pp0

sδ4ðkþk0−p−p0Þðfpfp0 −fkfk0 Þ:

ð7Þ

Note that even for the highly symmetric case considered
here the relativistic Boltzmann equation is still a nonlinear
integro-differential equation for fk.
Moment equations.—We proceed to solve the Boltzmann

equation using the method of moments [6]. Because of
local momentum isotropy, the distribution function fk can
be fully described by scalar moments only [31]:

ρmðtÞ ¼
Z
k
ðu · kÞmþ1fkðtÞ ¼

Z
k
ðk0Þmþ1fkðtÞ

¼ 1

2π2
1

amþ3ðtÞ
Z

∞

0

dkkmþ2fkðtÞ ðm ∈ N0Þ: ð8Þ

The time dependence of the two lowest moments, the
number density nðtÞ≡ ρ0ðtÞ and the energy density
εðtÞ≡ ρ1ðtÞ, is given by the conservation laws already
discussed. For a classical gas of massless particles, they
provide the time dependence of the temperature T and
fugacity λ ¼ expðμ=TÞ (where μ is the chemical potential)
via the matching conditions [6] T ¼ ε=ð3nÞ and νdλ ¼
nπ2=T3, where νd is the number of massless degrees of
freedom (including statistical degeneracy factors). In the
following, we set νd ¼ 1 for simplicity.
From the matching conditions it follows that TðtÞ ¼

Tðt0Þ=aðtÞ and μðtÞ ¼ μðt0Þ=aðtÞ such that the fugacity λ is
time independent. TðtÞ and λ define the local equilibrium
distribution function feqk ðtÞ ¼ λ exp½−u · k=TðtÞ� and the
equilibrium scalar moments

ρeqm ðtÞ ¼ ðmþ 2Þ!
2π2

λTmþ3ðtÞ: ð9Þ

To express the Boltzmann equation in terms of the scalar
moments ρm we multiply (7) by ðu · kÞm and integrate over
k. This results in

∂tρmðtÞ þ ð3þmÞHðtÞρmðtÞ ¼ CðmÞ
gainðtÞ − CðmÞ

lossðtÞ; ð10Þ

where the gain and loss terms are defined by

CðmÞ
gainðtÞ

¼ð2πÞ5
2

ffiffiffiffiffiffi
−g

p
σ

Z
kk0pp0

sðu ·pÞmδ4ðkþk0−p−p0Þfkfk0 ;

CðmÞ
lossðtÞ

¼ð2πÞ5
2

ffiffiffiffiffiffi
−g

p
σ

Z
kk0pp0

sðu ·kÞmδ4ðkþk0−p−p0Þfkfk0 :

ð11Þ

Here the gain term was simplified by using the symmetry of
the transition rate under interchange of the incoming and
outgoing momenta. With
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ffiffiffiffiffiffi
−g

p Z
pp0

δ4ðkþ k0 − p − p0Þ ¼ 1=ð2πÞ5; ð12Þ

the loss term reduces straightforwardly to [6]

CðmÞ
lossðtÞ ¼ σρmðtÞnðtÞ: ð13Þ

However, the gain term is more involved. One first writes

CðmÞ
gainðtÞ ¼

σ

2

Z
kk0

sfkfk0Pm; ð14Þ

where the inner kernel is

Pm ≡ ð2πÞ5 ffiffiffiffiffiffi
−g

p Z
pp0

ðu · pÞmδ4ðkþ k0 − p − p0Þ: ð15Þ

This quantity is a scalar and can be calculated in any
frame. In the center of momentum frame, the four-
dimensional delta function can be integrated and the
remaining angular integrals can be performed analytically
[32,33]. The final result can be expressed as follows:

Pm ¼ m!

½2aðtÞ�m
Xmþ1

jodd

ðkþ k0Þmþ1−j

ðmþ 1 − jÞ!
jkþ k0jj−1

j!
: ð16Þ

Plugging this back into (14) and performing some algebraic
manipulations [32,33] one obtains

CðmÞ
gainðtÞ ¼ 2ðmþ 2Þm!σ

Xm
j¼0

ρjðtÞ
ðjþ 2Þ!

ρm−jðtÞ
ðm − jþ 2Þ! : ð17Þ

Using these results in Eq. (10) we derive the following
exact evolution equation for the moments:

∂tρmðtÞ þ ½ð3þmÞHðtÞ þ σnðtÞ�ρmðtÞ

¼ 2ðmþ 2Þm!σ
Xm
j¼0

ρjðtÞ
ðjþ 2Þ!

ρm−jðtÞ
ðm − jþ 2Þ! : ð18Þ

This infinite set of coupled nonlinear differential equations
for the scalar moments ρmðtÞ is equivalent to the original
relativistic integro-differential Boltzmann equation. For
m ¼ 0 and m ¼ 1, Eq. (18) reduces to Eqs. (3) for the
particle and energy densities. Higher-order moments are
more sensitive to the distribution function at higher
momentum. We can further simplify the moment equations
by introducing the scaled moments MmðtÞ≡ ρmðtÞ=ρeqm ðtÞ
[34] and the scaled time t̂ ¼ t=l0, where l0 ¼ 1=½σnðt0Þ� is
the (constant) mean free path at time t0. This yields the
surprisingly simple evolution equations

a3ðt̂Þ ∂Mmðt̂Þ
∂ t̂ þMmðt̂Þ ¼

1

mþ 1

Xm
j¼0

Mjðt̂ÞMm−jðt̂Þ: ð19Þ

Equation (19) is the main result of this Letter. While the
nonlinear coupling between different moments was
expected from the nonlinearity of the collision kernel,
the same cannot be said about another key feature of
Eq. (19): it can be solved recursively; i.e., the solution of
the evolution equation for Mn requires only previously
solved momentsMkðtÞ of lower order k < n. This property
depends on our choice of an energy-independent cross
section; it is essential for being able to solve (19)
analytically.
All information about the expansion appears in the factor

a3ðt̂Þ multiplying the time derivative in (19). Whether or
not local equilibrium can be achieved thus depends on the
state of expansion of the system. For example, when aðt̂Þ ∼
t̂1=2 the mean free path lðt̂Þ ¼ 1=½σnðt̂Þ� increases faster
than the expansion rate, limt̂→∞lðt̂Þθðt̂Þ → ∞, and local
equilibrium cannot be reached even at asymptotically large
times. Moreover, if the initial fkðt̂0Þ is positive definite,
Mnðt̂0Þ > 0, and Eq. (19) then implies that all moments
remain positive throughout the evolution, translating into
positivity for fk for all momenta at all times.
Equation (19) closely resembles the Bobylev-Krook-Wu

(BKW) equation derived almost four decades ago [12,13]
in a famous study about homogeneous and isotropic
solutions of the nonrelativistic Boltzmann equation (for
a review, see [14]) for Maxwell molecules. In fact, by
defining the time variable τ ¼ R

t̂
t̂0
dt0=a3ðt0Þ to take into

account the expansion [35], our equation (19) for the
moment becomes identical to the BKW equations [13]:

∂τMmðτÞ þMmðτÞ ¼
1

mþ 1

Xm
j¼0

MjðτÞMm−jðτÞ: ð20Þ

This indicates that even though the underlying symmetries
of these physical systems are quite different (BKW’s are
based on Galilean invariance with static conditions while
ours are embedded in an expanding system), these systems
are actually equivalent from a dynamical perspective and
evolve towards equilibrium in a universal manner. We note
that our equations also reduce to BKW’s when aðt̂Þ≡ 1,
i.e., for a nonexpanding metric (though special relativistic
effects are still fully taken into account).
Analytical solution of the moment equations.—Given the

close relation of our Eq. (19) with the BKWequation (20) it
is not surprising that it admits an exact analytic solution of
the Krook-Wu type:

MmðτÞ ¼ KðτÞm−1½m − ðm − 1ÞKðτÞ� ðm ≥ 0Þ; ð21Þ

where KðτÞ ¼ 1 − 1
4
expð−τ=6Þ. The time evolution of the

moments is shown in Fig. 1(a). One sees that low-order
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moments equilibrate more quickly than the higher-order
ones that are needed to describe the high-momentum
nonequilibrium tail of the distribution function.
Given the exact form (21) of the moments MmðτÞ, the

distribution function can be reconstructed as follows. One
defines the function F ðτ; u · kÞ ¼ ðu · kÞ2θðu · kÞfk where
u · k ¼ k=aðτÞ, expands its Fourier transform with respect
to k in terms of the momentsMmðτÞ, and then transforms it
back. This yields the exact result [32]

fkðτÞ ¼ λ exp

�
−

u · k
KðτÞTðτÞ

�

×

�
4KðτÞ − 3

K4ðτÞ þ u · k
TðτÞ

�
1 −KðτÞ
K5ðτÞ

��
: ð22Þ

To the best of our knowledge, this is the first analytic
solution of the full Boltzmann equation for an expanding
interacting gas. At the initial time t̂0 [corresponding to
τ ¼ 0 and TðτÞ ¼ T0] one finds the initial condition
fkð0Þ ¼ ð256=243Þðk=T0Þλ exp½−4k=ð3T0Þ� > 0. In
Fig. 1(b) we plot the analytical solution for the ratio
fkðτÞ=feqk ðτÞ as a function of u · k=TðτÞ ¼ k=T0 for
τ ¼ 0, 5, and 10. At τ ¼ 0 the high momentum tail is

largely underpopulated whereas momentum modes in the
range k=T0 ∼ 1.6–5 are overoccupied relative to local
equilibrium. As time evolves, high momentum modes
are populated at the expense of the overpopulated moderate
momentum region, in a process resembling an energy
cascade. Note, however, that when aðt̂Þ ∼ t̂1=2 one finds
that limt̂→∞τðt̂Þ is finite and (22) never assumes the
equilibrium form.
The moment equations (19) can also be studied numeri-

cally for a variety of initial conditions for which no analytic
solution is known. Here, we briefly address the question of
whether or not the direct energy cascade seen in Fig. 1 is
related to self-similar behavior characteristic of turbulence
[36]. While a detailed study of self-similarity in this system
is beyond the scope of this short paper, we note here that
expressing the Boltzmann equation in terms of its moments
may be quite useful in this context. For instance, one can
show that nonthermal fixed points corresponding to exact
self-similar solutions of the kind

fkðt̂Þ ¼ aγðt̂ÞfS½aβðt̂Þu · k�; ð23Þ

where γ and β are the scaling exponents and fS is the fixed
point distribution [36], are not compatible with Eq. (19). In
fact, using Eq. (3) one can see that the scaling exponents are
necessarily γ ¼ 0 and β ¼ 1, and that the ansatz (23) for the
distribution function (if assumed to be valid for all
momenta) leads to moments

ρSmðt̂Þ ¼
1

2π2
cSm

amþ3ðt̂Þ ð24Þ

[where cSm ¼ R
∞
0 dξξmþ2fSðξÞ] that have the same time

dependence as the equilibrium moments. This implies that
the corresponding normalized moments MS

m ¼ ρSm=ρ
eq
m are

time independent. Since the conservation laws require that
MS

0 ¼ MS
1 ¼ 1, one can then use (19) to show thatMS

m → 1

for all m. This shows that there are no other true fixed
points of the dynamics besides local thermal equilibrium.
Conclusions.—We derived from the relativistic

Boltzmann equation a nonlinear set of coupled moment
equations for a massless gas with constant cross section in a
homogeneous, isotropically expanding spacetime. For a
particular initial condition, we found that the moment
equations can be solved exactly, thereby obtaining the first
analytical solution of the Boltzmann equation with full
nonlinear collision term for an expanding system.
The normalized moments of this expanding relativistic

gas can be directly mapped onto the corresponding
moments for a homogeneous, static nonrelativistic gas of
Maxwell molecules. This happens even though the dis-
tribution functions of these systems are not the same. This
nontrivial correspondence suggests that exact self-similar
nonequilibrium solutions may not exist even in rapidly
expanding systems.

FIG. 1. Time evolution of the moments Mn (a) and of the ratio
between the out-of-equilibrium solution (24) and the equilibrium
distribution (b).
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The study performed here can be extended along several
directions. One may consider different types of cross
sections, or include nonzero particle masses to investigate
bulk viscous effects. If possible, the generalization of the
method presented here to expanding systems with different
symmetries [15,18,37–39] that are relevant for the study of
the quark-gluon plasma formed in heavy ion collisions
would be particularly desirable.

G. S. D. thanks S. Schlichting and A. Dumitru for
enlightening discussions. M.M. thanks Y. Mehtar-Tani
and S. Ozonder for useful discussions. J. N. thanks the
Physics Department at Columbia University for its hospi-
tality and Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP)
for financial support. U. H. and M.M. express their
gratitude to the Institute for Nuclear Theory for hospitality
during the final stages of this work. G. S. D. thanks the
Kavli Institute of Theoretical Physics China (KITPC) for
hospitality during the initial stages of this work. G. S. D. is
currently supported under DOE Contract No. DE-
SC0012704 and acknowledges previous support of a
Banting fellowship provided by the Natural Sciences and
Engineering Research Council of Canada. D. B., U. H., and
M.M. are supported by the U.S. Department of Energy,
Office of Science, Office of Nuclear Physics under Award
No. DE-SC0004286. U. H., M. M., and J. N. gratefully
acknowledge support through a bilateral travel grant from
FAPESP and the Ohio State University.

[1] U. Heinz, Ann. Phys. (N.Y.) 161, 48 (1985); 168, 148 (1986).
[2] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[3] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 11 (2000) 001.
[4] D. Molnar and M. Gyulassy, Nucl. Phys. A697, 495 (2002);

A703, 893(E) (2002).
[5] Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005).
[6] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,

Phys. Rev. D 85, 114047 (2012); 91, 039902(E) (2015).
[7] M. Liebendoerfer, M. Rampp, H.-T. Janka, and A.

Mezzacappa, Astrophys. J. 620, 840 (2005).
[8] H. T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo,

and B. Mueller, Phys. Rep. 442, 38 (2007).
[9] C. P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995).

[10] S. Dodelson, Modern Cosmology (Academic Press,
San Diego, 2003).

[11] S. Weinberg, Cosmology (Oxford University Press,
New York, 2008).

[12] A. V. Bobylev, Sov. Phys. Dokl. 20, 820 (1976).
[13] M. Krook and T. T. Wu, Phys. Rev. Lett. 36, 1107 (1976);

Phys. Fluids 20, 1589 (1977).

[14] M. H. Ernst, J. Stat. Phys. 34, 1001 (1984).
[15] W. Florkowski, R. Ryblewski, and M. Strickland, Nucl.

Phys. A916, 249 (2013).
[16] W. Florkowski, R. Ryblewski, and M. Strickland, Phys.

Rev. C 88, 024903 (2013).
[17] G. S. Denicol, W. Florkowski, R. Ryblewski, and M.

Strickland, Phys. Rev. C 90, 044905 (2014).
[18] G. S. Denicol, U. Heinz, M. Martinez, J. Noronha, and M.

Strickland, Phys. Rev. Lett. 113, 202301 (2014).
[19] G. S. Denicol, U. Heinz, M. Martinez, J. Noronha, and M.

Strickland, Phys. Rev. D 90, 125026 (2014).
[20] M. Nopoush, R. Ryblewski, and M. Strickland, Phys. Rev.

D 91, 045007 (2015).
[21] J. Noronha and G. S. Denicol, Phys. Rev. D 92, 114032

(2015).
[22] Y. Hatta, M. Martinez, and B.W. Xiao, Phys. Rev. D 91,

085024 (2015).
[23] J. L. Anderson and H. R. Witting, Physica (Amsterdam) 74,

489 (1974); 74, 489 (1974).
[24] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,

511 (1954).
[25] H. Grad, Commun. Pure Appl. Math. 2, 325 (1949).
[26] S. Weinberg, Gravitation and Cosmology: Principles and

Applications of the General Theory of Relativity (John
Wiley & Sons, New York, 1972).

[27] D. Baumann, Cosmology Part III: Mathematical Tripos,
available at http://www.damtp.cam.ac.uk/user/db275/
Cosmology/Lectures.pdf.

[28] C. Cercignani and G. M. Kremer, The Relativistic
Boltzmann Equation: Theory and Applications (Birkhäuser,
Boston, 2002).

[29] J. Bernstein, Kinetic Theory in the Expanding Universe
(Cambridge University Press, New York, 1988).

[30] F. Debbasch and W. A. van Leeuwen, Physica (Amsterdam)
388A, 1079 (2009); 388A, 1818 (2009).

[31] For anisotropic systems, this is no longer true and
one must consider additional irreducible moments of
fk [6].

[32] D. Bazow, G. S. Denicol, U. Heinz, M. Martinez, and
J. Noronha (to be published).

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.022301 for more
details about this derivation.

[34] Equations (3) and the matching conditions imply that
M0ðt̂Þ ¼ M1ðt̂Þ ¼ 1 throughout the evolution.

[35] This is equivalent to scaling the time t by the time-
dependent mean free path lðtÞ instead of the constant l0

used above Eq. (19).
[36] J. Berges, arXiv:1503.02907.
[37] T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301

(2013).
[38] J.Berges,K.Boguslavski, S. Schlichting, andR.Venugopalan,

Phys. Rev. D 89, 114007 (2014).
[39] A. Kurkela and Y. Zhu, Phys. Rev. Lett. 115, 182301

(2015).

PRL 116, 022301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

022301-5

http://dx.doi.org/10.1016/0003-4916(85)90336-7
http://dx.doi.org/10.1016/0003-4916(86)90114-4
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1088/1126-6708/2000/11/001
http://dx.doi.org/10.1088/1126-6708/2000/11/001
http://dx.doi.org/10.1016/S0375-9474(01)01224-6
http://dx.doi.org/10.1016/S0375-9474(02)00859-X
http://dx.doi.org/10.1103/PhysRevC.71.064901
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevD.91.039902
http://dx.doi.org/10.1086/427203
http://dx.doi.org/10.1016/j.physrep.2007.02.002
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1103/PhysRevLett.36.1107
http://dx.doi.org/10.1063/1.861780
http://dx.doi.org/10.1007/BF01009454
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.004
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.004
http://dx.doi.org/10.1103/PhysRevC.88.024903
http://dx.doi.org/10.1103/PhysRevC.88.024903
http://dx.doi.org/10.1103/PhysRevC.90.044905
http://dx.doi.org/10.1103/PhysRevLett.113.202301
http://dx.doi.org/10.1103/PhysRevD.90.125026
http://dx.doi.org/10.1103/PhysRevD.91.045007
http://dx.doi.org/10.1103/PhysRevD.91.045007
http://dx.doi.org/10.1103/PhysRevD.92.114032
http://dx.doi.org/10.1103/PhysRevD.92.114032
http://dx.doi.org/10.1103/PhysRevD.91.085024
http://dx.doi.org/10.1103/PhysRevD.91.085024
http://dx.doi.org/10.1016/0031-8914(74)90356-5
http://dx.doi.org/10.1016/0031-8914(74)90356-5
http://dx.doi.org/10.1016/0031-8914(74)90356-5
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1002/cpa.3160020402
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://dx.doi.org/10.1016/j.physa.2008.12.023
http://dx.doi.org/10.1016/j.physa.2008.12.023
http://dx.doi.org/10.1016/j.physa.2009.01.009
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.022301
http://arXiv.org/abs/1503.02907
http://dx.doi.org/10.1103/PhysRevLett.111.232301
http://dx.doi.org/10.1103/PhysRevLett.111.232301
http://dx.doi.org/10.1103/PhysRevD.89.114007
http://dx.doi.org/10.1103/PhysRevLett.115.182301
http://dx.doi.org/10.1103/PhysRevLett.115.182301

