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For a small driven system coupled strongly to a heat bath, internal energy and exchanged heat are
identified such that they obey the usual additive form of the first law. By identifying this exchanged heat
with the entropy change of the bath, the total entropy production is shown to obey an integral fluctuation
theorem on the trajectory level implying the second law in the form of a Clausius inequalilty on the
ensemble level. In this Hamiltonian approach, the assumption of an initially uncorrelated state is not
required. The conditions under which the proposed identification of heat is unique and experimentally
accessible are clarified.
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The thermodynamic analysis of a system coupled to a
work source and a heat bath of temperature T typically
relies crucially on the assumption that the coupling to the
bath is weak. If this condition is not met, partitioning the
work W spent in a process into dissipated heat Q and
an increase in internal energy of the system ΔE in the form
of a first law

W ¼ ΔE þQ ð1Þ
leaves the question open whether at all, and, if so, in which
form, the interaction between the system and bath is
contained in the two terms on the right-hand side. The
same issue arises in the second law when it is written in
the additive form as a Clausius inequality

ΔStot ¼ ΔS þQ=T ≥ 0 ð2Þ
splitting the total entropy change ΔStot into one of the
system ΔS and one of the bath given by the heat divided
by T.
Work is arguably the least problematic of the five

quantities appearing above since it can easily be identified
even in the presence of strong coupling. By treating the
system and bath including the interaction as one big closed
system that evolves under a time-dependent Hamiltonian,
the change of the latter from an initial state to a final one
represents work. If the initial state is drawn from a
canonical ensemble for the whole system, work is known
to obey exact relations like the Jarzynski equality [1] and
the Crooks relation [2] even in the presence of strong
coupling [3] as, inter alia, many single molecule experi-
ments over the last decade have demonstrated convincingly
[4–9]. Since typical work values of even a few hundred kBT
become tiny when divided by the number of molecules in
the solution in contact with the biomolecule, the change
in the interaction between the bath and the molecule is not
necessarily negligible compared to those in the internal
energy of the molecule. The success of these experiments

therefore rests partially on the fact that their interpretation
does not require splitting the work into internal energy
and heat for these strongly coupled systems. On the other
hand, for driven solid state devices, recent progress in
ultrasensitive calorimetry should soon make heat exchange
directly accessible experimentally [10,11].
Exploring the role of strong coupling for equilibrium

thermodynamics has a long history going back, in the
classical case, at least to Kirkwood’s concept of a potential
of mean force [12,13], see, e.g., Ref. [14] for a recent
analysis. For quantum systems, the role of strong coupling
has been discussed in particular in the context of damped
harmonic oscillators for quite some time [15,16] with a
recent emphasis on apparent anomalies like a negative
specific heat [17]. How to formulate a consistent thermo-
dynamics for a strongly coupled system under nonequili-
brium conditions, like relaxation after an initial quench or
genuine time-dependent driving, has found more attention
lately for quantum systems than for classical ones. Various
approaches and schemes are discussed [18–33] without
arguably reaching a consensus yet on how to identify,
beyond work, the terms in Eqs. (1) and (2) uniquely.
Crucial aspects surface similarly in both frameworks,

classical and quantum. One common subtle issue concerns
entropy production since treating the full system as closed,
which works so nicely for an identification of work, implies
on the other hand that the total change of the Gibbs, or
Shannon, entropy (classically), or of the von Neumann
entropy in the quantum case, remains strictly constant
even under time-dependent driving. A positive entropy
production results, however, if one ignores the correlations
between the system and bath, see, e.g., Ref. [22]. Even
then, however, the identification of heat is not unique as,
e.g., the comparison of two schemes for a simple relaxation
for quantum Brownian motion has shown [27]. Moreover,
in these approaches, one often assumes that initially the
system and bath are individually equilibrated as if there was
no interaction. For most biomolecular systems in aqueous
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solution, however, such an assumption is certainly rather
unrealistic.
In this Letter, we present an approach that allows us to

identify the terms appearing in the additive forms of the
first and the second law consistently for driven classical
systems strongly coupled to a heat bath without requiring
an initially uncorrelated state. In the limit of weak coupling,
these quantities will become the established ones. A
particular virtue of this approach is that the terms appearing
in Eqs. (1) and (2) can be inferred from measurements
involving only observables of the system.
As a reference for the driven case, and to establish

notation, we first recall the equilibrium situation, see, e.g.,
Ref. [25]. For a system coupled to a heat bath, the total
Hamiltonian reads

Htotðξ; λÞ ¼ Hsðξs; λÞ þHbðξbÞ þHiðξÞ; ð3Þ

comprising, in this order, the system, bath, and interaction
Hamiltonian. A microstate in the full phase space is written
as ξ≡ ðξs; ξbÞ, where ξs and ξb denote microstates in
the phase space of the system and bath, respectively. The
control parameter λ, which will later be used to drive
the system, affects neither the bath nor the interaction part
of the Hamiltonian. While in a Hamiltonian approach
it may look more natural to consider a microcanonical
equilibrium for the full system, for technical reasons that
will become clear later we rather choose a canonical
equilibrium for the total system at inverse temperature β.
Then, the probability to find the system part in a state ξs
is given by

peqðξsjλÞ ¼ expf−β½Hðξs; λÞ − F ðλÞ�g: ð4Þ

Here,

Hðξs; λÞ≡Hsðξs; λÞ − β−1 lnhexp½−βHiðξÞ�ib: ð5Þ

is an effective Hamiltonian, or, in the jargon of physical
chemistry, a potential of mean force. It involves a canonical
average over the pure bath (at fixed ξs) denoted in the
following by

h� � �ib ≡
Z

dξb � � � expf−β½HbðξbÞ − F b�g; ð6Þ

where F b is the free energy of the pure bath. The
λ-dependent free energy of the system is defined through

exp½−βF ðλÞ�≡
Z

dξs exp½−βHðξs; λÞ�: ð7Þ

Still in equilibrium, this free energy implies through
the standard relation S ¼ β2∂βF for the entropy of the
system

SðλÞ ¼
Z

dξspeqðξsÞ½− lnpeqðξsÞ þ β2∂βHðξs; λÞ�; ð8Þ

setting Boltzmann’s constant to 1 throughout. Likewise, the
internal energy E ¼ F þ S=β becomes

EðλÞ ¼
Z

dξspeqðξsÞEðξs; λÞ ð9Þ

with

Eðξs; λÞ≡Hðξs; λÞ þ β∂βHðξs; λÞ: ð10Þ

In the weak coupling limit, the three energy functions
Hs;H, and E converge.
The additional contribution ∼∂βHðξs; λÞ beyond what

one might have expected naively for entropy and internal
energy takes into account that due to the finite interaction
the bath is correlated with the microstate ξs of the system.
In fact, with the standard canonical equilibrium for
the total system obeying in obvious notation the relation
F tot ¼ Etot − Stot=β and that for the pure bath with
F b ¼ Eb − Sb=β the above identified thermodynamic
quantities of the system fulfill

X ¼ X tot − Xb ð11Þ

for X ¼ F ; E;S. This additive relation indicates that in this
approach the interaction is fully accounted for through
modification of the quantities referring to the system.
We now drive the system for a time t through a time-

dependent control parameter λτ, with 0 ≤ τ ≤ t. The total
system comprising the system proper, the heat bath, and
the interaction is assumed to be closed. An initial phase
point ξ0 then evolves in time deterministically into ξt. The
corresponding mapping ξt ¼ ξtðξ0Þ has Jacobian 1 due
to Liouville’s theorem. We first keep a trajectory-based
approach [34,35] in which all quantities become a function
of the initial phase point ξ0.
The work spent in the driving is the total energy

difference

wðξ0Þ≡ ΔHtotðξ; λÞ≡Htotðξt; λtÞ −Htotðξ0; λ0Þ: ð12Þ

Here, and in the following, Δ operating on a quantity
implies the difference of this quantity between the final and
initial value. Hamiltonian dynamics implies that this work
can also be written as

wðξ0Þ ¼
Z

t

0

dτ∂λHsðξτs; λτÞ∂τλ; ð13Þ

which is the form used in stochastic energetics [34,35].
In fact, one could replace here ∂λHs by either ∂λH or ∂λE
without changing the subsequent results since all three
derivatives are the same.
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As a key step in the present approach, motivated by
Eq. (9), the internal energy of the system along a driven
trajectory ξτ is identified as Eðξτs; λÞ, independent of the
specific (and in any case unknown) value of the instanta-
neous bath coordinates ξτb. As we will show below, thus a
consistent thermodynamic scheme arises. This assignment
of internal energy implies the identification of dissipated
heat as

qðξ0Þ ¼ wðξ0Þ − ΔEðξs; λÞ ¼ Δ½Htotðξ; λÞ − Eðξs; λÞ�:
ð14Þ

It is instructive to show more explicitly how the inter-
action modifies the standard forms of the terms in the first
law. Writing

HiðξÞ ¼ hHiðξÞib þ δHiðξÞ ð15Þ
we separate the mean interaction, at fixed system coor-
dinate ξs, from its fluctuations δHiðξÞ. Similarly, the energy
of the bath is split according to

HbðξbÞ ¼ hHbðξbÞib þ δHbðξbÞ: ð16Þ
With Eqs. (5) and (10), the change in internal energy then
becomes after little algebra

ΔEðξs; λÞ ¼ Δ½Hsðξs; λÞ þ hHiðξÞib
þ hδHiðξÞBiðξÞib þ hδHbðξbÞBiðξÞib�; ð17Þ

where

BiðξÞ≡ exp½−βδHiðξÞ�=hexp½−βδHiðξÞ�ib: ð18Þ
Thus, the average interaction is fully attributed to the
internal energy, which, however, also picks up two more
contributions from the fluctuations. Correspondingly, the
heat (14) becomes

qðξ0Þ ¼ Δ½HbðξbÞ þ δHiðξÞ
− hδHiðξÞBiðξÞib − hδHbðξbÞBiðξÞib�: ð19Þ

Beyond the standard expression of dissipated heat, which
is the change in energy of the bath ΔHbðξbÞ, the first
two further contributions depend on how much the
interaction fluctuates for a fixed system state ξs. The last
contribution depends on correlations of the interaction
with fluctuations of the bath. In the weak coupling limit,
these additional contributions vanish since the interaction
becomes negligible.
The first law is thus obeyed on the trajectory level by

construction. It will remain valid on the ensemble level after
averaging with, in principle, any initial distribution p0ðξÞ.
As physically sensible initial distributions we will choose
from now on

p0ðξÞ ¼ p0
1ðξsÞpeq

2 ðξbjξs; λ0Þ; ð20Þ

where

peq
2 ðξbjξs; λÞ≡ expf−β½HiðξÞ þHbðξbÞ − F b�g

hexp½−βHiðξÞ�ib
: ð21Þ

The initial distribution of the system p0
1ðξsÞ is arbitrary.

For technical reasons, we require that it not vanish any-
where on the phase space of the system. The bath is
assumed to be equilibrated initially for any system state ξs.
In the following, averages with this initial distribution will
be denoted by h� � �i. Note that with the option of an initially
nonequilibrated system part relaxation towards equilibrium
at constant control parameter, e.g., after a quench of the
system, is covered by this framework as well. If p0

1ðξsÞ is
the equilibrium distribution (4), then the initial distribution
(20) corresponds to the canonical equilibrium in the full
phase space.
We now turn to checking the consistency of the proposed

identification of heat with the additive form of the second
law. As a technical tool, we will use the trivial but powerful
identity, or integral fluctuation theorem (IFT),

1 ¼
Z

dξtρðξtÞ ¼ hexpðlnfρ½ξtðξ0Þ�=p0ðξ0ÞgÞi: ð22Þ

Liouville’s theorem ensures that this IFT is valid for any
normalized function ρðξÞ provided the initial distribution
p0ðξÞ vanishes nowhere on the full phase space. By
choosing the legitimate factorized form

ρðξÞ ¼ pt
1ðξsÞpeq

2 ðξbjξs; λtÞ; ð23Þ

where pτ
1ðξsÞ is the true marginal distribution for ξs at time

τ, the IFT (22) becomes after trivial algebra

1 ¼ hexpf−½Δsðξ0Þ þ βqðξ0Þ�gi; ð24Þ

where the average is over the initial distribution (20). Here,
the change in system entropy along the trajectory is

Δsðξ0Þ≡ − lnpt
1ðξtsÞ þ lnp0

1ðξ0sÞ þ Δβ2∂βHðξs; λÞ:
ð25Þ

The first two terms amount to the change in stochastic
entropy familiar from stochastic thermodynamics [36].
The third contribution, called intrinsic entropy in a related
context [37], has the same physical origin as discussed
above in equilibrium. If we now identify, as usual, the
entropy change of the bath on the trajectory level with the
exchanged heat (times β), the exponent in Eq. (24) becomes
the total entropy production

Δstotðξ0Þ≡ Δsðξ0Þ þ βqðξ0Þ; ð26Þ
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which thus obeys an IFT

hexp½−Δstotðξ0Þ�i ¼ 1: ð27Þ

Even though this IFT looks like the one derived earlier
using a stochastic dynamics [36], one should note that here
it follows from a Hamiltonian dynamics for a strongly
coupled driven system.
The second law (2) for the calligraphic capitalized

quantities that denote the averages with respect to the
initial distribution (20) follows trivially from Jensen’s
inequality applied to Eq. (27). On a mathematical level,
we have thus shown that if the internal energy, the heat,
and the two contributions to total entropy production are
identified as suggested here, the additive form of the first
and second law is valid in the presence of strong coupling.
Can heat and the other quantities be measured in an

experiment where one has access to the trajectory of the
degrees of freedom of the system ξτs but, of course, not to the
bath coordinates? Equilibration at fixed λ yields Hðξs; λÞ
from measuring the corresponding equilibrium distribution
(4). Repeating these measurements at a slightly different
temperature will lead to ∂βHðξs; λÞ and thus to the internal
energy Eðξs; λÞ through Eq. (10). For the driven system, the
work is accessible from observing the trajectory ξτs using
Eq. (13) since the λ dependence of Hsðξs; λÞ is controlled
in an experiment. Hence, the heat can be inferred from
evaluating Eq. (14). Finally, the change in system entropy
follows from measuring the marginal distributions pt

1ðξsÞ
and p0

1ðξsÞ. Thus, all quantities are, at least in principle,
measurable experimentally from trajectories ξτs without ever
having to measure a bath degree of freedom. The ensemble
quantities appearing in Eqs. (1) and (2) then follow from
averaging the trajectory-resolved measurements.
A few further aspects, implications, and perspectives

are worth noting. First, is this assignment of heat, or,
equivalently, internal energy unique? On a formal level,
there seems to be freedom. Replacing the internal energy,
heat, and change in system entropy on the trajectory
level according to Eðξs; λÞ → Eðξs; λÞ þ χðξs; λÞ; q → q −
Δχðξs; λÞ and Δs → Δsþ βΔχðξs; λÞ, respectively, with an
arbitrary system state function χðξs; λÞ, which vanishes in
the weak coupling limit, leaves the first law (14) and the
IFT (27) invariant. In fact, the choice χðξs; λÞ ¼ Hðξs; λÞ −
Eðξs; λÞ amounts to what has been discussed in Ref. [27]
under the label “poised.” The crucial point, however, is that
any choice χðξs; λÞ ≠ 0 will spoil the thermodynamic
relation S ¼ β2∂βF , or, equivalently, dEjλ ¼ TdSjλ, when
applied on the ensemble level to equilibrium. As long as
one requires these latter relations for assigning the label
“thermodynamically consistent” only the present scheme
with χðξs; λÞ≡ 0 fulfills this criterion.
Second, we have assumed that the bath is in a system-

state dependent equilibrium initially. This choice is physi-
cally sensible if there is a separation of time scales between

the system and bath. Even with such a separation, however,
the Hamiltonian dynamics will not precisely lead to a
distribution of the form (23) at time t. Using the latter in
Eq. (22) should therefore be interpreted as a mathematical
convenience for deriving the IFT (24) rather than as a
statement about the true distribution. As an aside, note that
substituting the canonical distribution of the full system
at λt for ρðξÞ into Eq. (22) yields the strongly coupled
Jarzynski equality [3] for an initially equilibrated system
in one line.
Third, equality in the second law usually requires a

quasistatic process. In our approach, the second law (2)
follows from the IFT (27). Any IFT requires for a saturation
of the corresponding inequality that the underlying dis-
tribution for the exponent be deltalike. Thus, equality in
Eq. (2) holds if and only if Δstotðξ0Þ vanishes identically
for all initial microstates ξ0. Ultimately, this requirement
implies that the distribution for the full system starts and
remains canonical throughout the process. In this respect,
the strong coupling case does not differ from weak
coupling. In fact, from a more physical perspective, one
would expect that a moderate or strong coupling should
facilitate equilibration and hence the realization of quasi-
static conditions even more than the common idealized
weak coupling case does.
Fourth, so far we have not split the total volume into one

of the system and one of the bath, which would give rise to
a pressure term. It would be interesting to explore which
modifications arise from such a perspective in the case of
strong coupling [38].
Finally, since the main part of this Letter dealt with

classical systems, it is worth emphasizing that the present
scheme suggests, by analogy with Eq. (10), as an internal
energy operator for the system in the quantum case

Ê≡−ð1þ β∂βÞfβ−1 lnTrb exp½−βðĤsþ Ĥiþ Ĥb −FbÞ�g;
ð28Þ

where the hats denote operators, the trace is over the bath
degrees of freedom, and expð−βFbÞ≡ Trb expð−βĤbÞ. In
general, this operator Êwill be a quite complicated function
of temperature and the parameters of the total Hamiltonian.
The change in internal energy then follows, in principle,
from two point measurements of Ê at τ ¼ 0 and τ ¼ t.
Since, in general, ½Ê; Ĥtot� ≠ 0, work as given by the
difference in total energy can not be measured simulta-
neously. Hence, heat as the difference of work and internal
energy is not accessible through this route in the quan-
tum case.
In conclusion, for a classical driven system strongly

coupled to a heat bath not only work but also internal
energy, dissipated heat, and entropy production can be
identified on the level of a trajectory of the system. Total
entropy production obeys an integral fluctuation theorem
implying, on the ensemble level, a consistent interpretation

PRL 116, 020601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 JANUARY 2016

020601-4



of the second law as a Clausius inequality. For an
experimental realization, the heat accompanying conforma-
tional changes of mechanically manipulated biomolecules
should be accessible experimentally through measurements
at two different temperatures as suggested here. While the
theory is not confined to this particular class, with such
experiments these molecules could turn out to become
one paradigm for studying heat exchange in small driven
strongly coupled systems.

I thank S. Goldt and P. Pietzonka for a critical reading of
this Letter.
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