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Rainfall from ice-free cumulus clouds requires collisions of large numbers of microscopic droplets to
create every raindrop. The onset of rain showers can be surprisingly rapid, much faster than the mean time
required for a single collision. Large-deviation theory is used to explain this observation.
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The dynamics of the onset of rainfall from ice-free
(“warm”) cumulus clouds is poorly understood [1–3]. A
rain drop grows by collisions of microscopic water drop-
lets. A large number of microscopic droplets must combine
to make one rain drop: the volume increase is a factor of
approximately 1 × 106. The collision rates in the early
stages of the growth process are low (typically of order
1 collision=h). Given the large number of collisions
required, it is very hard to understand why rain showers
can be initiated over short periods, of perhaps 20 min.
One possible resolution is a consequence of the large

number of microscopic droplets which must combine to
make a raindrop. This implies that only very few drops are
required to undergo rapid growth, and perhaps there are
sufficient rare combinations of rapid multiple collisions to
explain rainfall: this has previously been emphasized by
various authors [1,4,5]. Kostinski and Shaw [6] introduced
an elegant model for this runaway growth process. They
presented numerical evidence that the model can lead to a
rapid development of showers, but a transparent theoretical
approach is required. Because this problem involves the
analysis of rare events, methods based upon large deviation
theory [7,8] are appropriate. In this Letter these methods are
used to investigate the hypothesis that rare combinations of
rapid collisions trigger showers. It is shown that a rain
shower can develop over a time scale which is a small
fraction of the mean time scale for one collision.
This Letter will start by discussing some observations

and estimates [1–3] that illustrate the difficulties in making
a quantitative description of rainfall. These will be followed
by describing a model for runaway droplet growth,
Eqs. (4)–(6), introduced in Ref. [6]. This model will then
be analyzed using a large deviation theoretic approach.
A convecting cumulus cloud may have droplets of mean

radius radius a0 ¼ 10 μm, which result from condensation
onto aerosol nuclei. Raindrops have a much larger size,
typically 1 mm. The volume of a droplet that becomes a
raindrop therefore increases by a very large factor, denoted
by N , which is typically N ≈ 106. The number density of
microscopic droplets is typically of order N0 ¼
2.5 × 108 m−3, which gives a liquid water content,
expressed as a volume fraction, Φl ≈ 4πN0a30=3 ≈ 10−6.

The cloud depth may be h ¼ 2 × 103 m and the typical
vertical velocity of air inside the cloud has magnitude
U ≈ 2 ms−1, so that the turnover time for convection is
approximately τh ¼ 103 s. Rainfall from this type of cloud
can develop over a time scale of approximately
20min≈103 s.
Collisions between droplets arise principally from differ-

ent terminal velocities. The Stokes law for the drag on a
sphere at low Reynolds number indicates that the terminal
velocity is

v ¼ τpg ¼ αa2; α ¼ 2

9

ρl
ρg

g
ν
; ð1Þ

where τp is the response time characterizing the Stokes
drag on a droplet, ρl is the density of liquid water, and ρg
and ν are, respectively, the density and kinematic viscosity
of air. Inserting values for air and water at 5 °C gives
α ≈ 1.4 × 108 m−1 s−1, so that when a0 ¼ 10 μm the ter-
minal velocity is v ≈ 1.4 × 10−2 ms−1 and the response
time is 1.4 × 10−3 s. The collision rate of a drop of radius
a1 with a gas of droplets of radius a0 is

R1 ¼ πεN0ða0 þ a1Þ2αða21 − a20Þ; ð2Þ

where ε is the coalescence efficiency [1,2]. The coalescence
efficiencies ε of small droplets are somewhat uncertain, but
it is widely accepted that they are low for typical cloud
droplets [1,2]. If the larger droplet has radius below 20 μm,
it is believed that ε ≤ 0.1, and that for radius 10 μm,
ε ≤ 0.03 [2]. For droplets of size a ¼ 50 μm colliding with
droplets of size a ¼ 10 μm, however, the efficiencies are
expected to be close to unity [1,2]. Setting a1 − a0 ¼
2.5 μm and ε ¼ 0.03 in addition to the parameters defined
above gives R1 ≈ 2 × 10−5 s−1. The rate of coalescence of
typical sized water droplets due to collisions is therefore
very small.
Cumulus clouds are turbulent because of convective

instability. Saffman and Turner [9] investigated the role of
turbulence in facilitating collisions between water droplets.
In the case of very small droplets, the collision rate due to
turbulence is a consequence of shearing motion. The shear
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rate of small-scale motions in turbulence is the inverse of
the Kolmogorov time scale, τK ¼ ffiffiffiffiffiffiffi

ν=ϵ
p

, where ϵ is the rate
of dissipation per unit mass. According to the Saffman-
Turner model, shear induces a collision speed of order
a0=τK . They argue that the corresponding collision rate is

Rturb ¼
ffiffiffiffiffiffi
8π

15

r
N0εð2aÞ3

τK
: ð3Þ

For the parameters of the cloud model, the rate of
dissipation is ϵ ∼U2=τh ≈ 2 × 10−3 m2 s−3, giving τK≈
70 ms, so that Rturb ≈ 10−6 s−1, which is negligible. The
effects of turbulence are dramatically increased when the
effects of droplet inertia are significant: this was noticed in
numerical experiments by Sundaram and Collins [10], who
ascribed the effect to a clustering effect termed “preferential
concentration” [11]. More recent work has proposed an
alternative mechanism, which has been termed the “sling
effect” [12], and which has been explained in terms of the
existence of caustics in the velocity field of the droplets
[13]. Inertial effects are measured by the Stokes number,
St≡ τp=τK . Recent numerical studies [14] (see also
Ref. [15]) show that while the collision rate is greatly
enhanced by effects due to caustics for St > 0.3, Eq. (3) is a
good estimate when St ≪ 1. Although it is in principle
possible for turbulence to increase the collision rate of
water droplets due to inertial effects, the parameters of the
cloud model discussed above yield St ≈ 2 × 10−2, where
there is no significant effect. While there is a consensus that
turbulence is important for the formation of rain showers
[16], turbulent enhancement of collision rates does not
appear to be sufficient.
Now consider how to model the onset of a shower,

developing the approach discussed in Ref. [6]. It has
already been remarked that showers occur on a time scale
which may be smaller than the typical time scale for one
collision. It is, therefore, reasonable to assume that the
runaway droplets are falling through a background of
droplets which have not yet coalesced, and which are all
of similar size. As a runaway droplet falls it collides with a
large number N of small droplets of size a0. The time
between successive collisions may be assumed to be
independent Poisson processes. If the time between the
collision with index n and the previous collision is tn, the
time for a droplet to experience runaway growth is

T ¼
XN
n¼1

tn; ð4Þ

where the tn are independent random variables with an
exponential distribution

PnðtnÞ ¼ Rn expð−RntnÞ: ð5Þ
The problem is to determine the statistics of T in the limit as
N → ∞. Note that, because the droplets grow by

collisions, the droplet volume increases by a factor of
approximately N as a result of these collisions, so that its
radius increases by a factor of N 1=3. Equation (2) shows
that the rates for successive collisions increase as the size of
the falling drop grows. Because all of the collision rates Rn
scale in the same way as a function of the droplet size a0
and the number density N0, write Rn ¼ R1fðnÞ. Here R1

depends upon the properties of the cloud but the function
fðnÞ is the same for all clouds. In order to identify the form
of fðnÞ, consider the rate of collision of a large droplet
resulting from n previous collisions with a gas of small
droplets of radius a0. The radius of the large droplet is
an ¼ n1=3a0. When n is large it may be assumed that
the collision efficiency is ε ≈ 1 and an ≫ a0, so that
Rn ∼ πN0αa4n ∝ n4=3, which suggests setting fðnÞ ¼
n4=3. However, during the early stages of droplet growth,
the collision efficiency for the first few collisions is small,
but increases rapidly with n. In what follows fðnÞ is
assumed to be a power law, so that

Rn ¼ R1nγ: ð6Þ
If the collision efficiency of droplets were unity, it would be
appropriate to set γ ¼ 4=3. Because the collision efficiency
of droplets at the crucial initial stage of their growth is
small, the collision rate increases more rapidly as the size of
the falling droplet increases. When the droplets are between
10 and 50 μm it is reasonable to model the product of the
collision rate and the collision efficiency as being propor-
tional to a6, that is to n2, where n is the number of collisions
[6]. In other cases, such as solid precipitation (snow), other
values of γ may be appropriate. In the following, γ is left as
an adjustable parameter, but special consideration is given
to γ ¼ 2, because it gives a good approximation to
terrestrial rainfall, and to γ ¼ 4=3, because this may be a
good approximation for atmospheres on other planets
where the collision efficiency might not limit the rate of
coalescence. The remainder of this Letter is concerned with
using large deviation theory to analyze the consequences of
the model contained in Eqs. (4)–(6).
It is necessary to determine the probability density for

the time T being a very small fraction of its mean value,
hTi. Inspired by large deviation theory [7,8], the probability
density of T is written in an exponential form:

PðTÞ ¼ 1

hTi exp½−JðτÞ�; τ ¼ T
hTi : ð7Þ

When Rn is given by Eq. (6), the mean time for explosive
growth converges as N → ∞ when γ > 1:

lim
N→∞

hTi ¼ lim
N→∞

1

R1

XN
n¼1

n−γ ¼ 1

R1

ζðγÞ: ð8Þ

where ζ is the Riemann zeta function. The function JðτÞ in
Eq. (7) is often termed the entropy in texts on large
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deviation theory [7,8]. It will be necessary to determine the
entropy function JðτÞ from the rates Rn.
After a drop has grown to a size where it is much larger

than the typical droplets, and where the collision efficiency
is approximately unity, it falls rapidly and collects other
droplets in its path. Consider a drop of size a1 falling
through a “gas” of much smaller droplets, with liquid
volume fraction Φl. The larger drop falls with velocity v
and sweeps out a volume πa21v per unit time, so that it
grows in volume at a rate _V ¼ πεa21Φlv ¼ 4πa21 _a1, where
_a1 is the rate of increase of the drop radius. The rate of
increase of the radius of the “collector” drop as a function
of the distance x through which it has fallen is, therefore,

da
dx

¼ εΦl

4
: ð9Þ

Note that this expression is valid whether or not the
terminal velocity is given by the small Reynolds number
approximation, Eq. (1). In the case of droplets which reach
a radius of approximately 1 mm, the collision efficiency ε is
close to unity throughout most of the fall. The droplet
radius after falling through a cloud of depth h is therefore
aðhÞ ∼ Φlh=4. It will be assumed that the most relevant
collector drops are those that started at the top of the cloud.
Because droplets grow by coalescence of microscopic
droplets as they fall, the ratio of the final volume to the
initial volume is equal to the number of collisions: this is

N ¼
�

h
4a0

�
3

Φ3
l : ð10Þ

Using the representative values given above givesN ≈ 105.
Kostinski [17] has used related arguments to explain
observations that the rate of production of drizzle from
maritime stratus clouds is proportional to the cube of
its depth.
The fraction of droplets undergoing runaway growth

between time t and tþ δt is PðtÞδt. Because the volume of
the runaway growth droplets has increased by a factor of
N , when these raindrops fall out of the cloud they reduce
the liquid water content Φl by NΦlPðtÞδt. The rate of
change of the liquid water content of a cloud due to the
runaway growth of droplets is, therefore,

dΦl

dt
¼ −ΦlNPðtÞ: ð11Þ

Note that the growth factor N and the probability density
for runaway growth after time t are both functions of Φl,
but if the objective is to understand the onset of a rain
shower it suffices to evaluate these quantities with the initial
value Φlð0Þ. The onset of the shower is determined by the
criterion that a significant fraction μ (typically a few
percent) of the liquid water content of a cloud is removed
by creating raindrops, resulting from N collision events:

from Eq. (11) this occurs when N
R
t
0 dt

0Pðt0Þ ¼ μ. Using
Eq. (7) for PðtÞ, the condition for the time scale t�, where
there is a significant reduction in ΦlðtÞ is approximated by
N � exp½−Jðt�=hTiÞ� ¼ 1, where N � ¼ N =μ is a large
number, typically N � ≈ 106. The condition for the onset
of a shower is, therefore,

t� ¼ τ�hTi; Jðτ�Þ ¼ lnN �: ð12Þ

To determine the solution of Eq. (12) for t�, it is necessary
to determine the entropy function JðτÞ for the random sum
defined by Eqs. (4) and (5).
Now consider how to compute JðTÞ. A cumulant

generating function λðkÞ is defined by writing

exp½−λðkÞ� ¼ hexpð−kTÞi ¼
Z

∞

0

dTPðTÞ expð−kTÞ:
ð13Þ

Because the tn are independent, with a distribution given by
Eq. (5),

λðkÞ ¼ −
XN
n¼1

lnhexpð−ktnÞi ¼
XN
n¼1

ln

�
1þ k

Rn

�
: ð14Þ

Consider how to obtain PðTÞ from λðkÞ. Noting that
exp½−λðkÞ� is the Laplace transform of PðTÞ, application
of the Bromwich integral formula for inversion gives

PðTÞ ¼ 1

2πi

Z
Rþi∞

R−i∞
dz exp½zT − λðzÞ�; ð15Þ

where R > −R1. The integral is dominated by contribu-
tions from the neighbourhood of a saddle at z ¼ k� (on the
real axis), where

T ¼
XN
n¼1

1

Rn þ k�
; ð16Þ

which is to be solved for the saddle point k� given a value of
the time T. The probability density PðTÞ is then approxi-
mated by

PðTÞ ¼ 1

R1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πJ00ðk�Þp exp½−JðτÞ�; ð17Þ

where τ ¼ T=hTi and J00ðkÞ is the magnitude of the second
derivative of the exponent in Eq. (15). Equations (16) and
(17) cannot be solved exactly and explicitly for JðτÞ.
Consider how to write down a parametric representation
of JðτÞ using a scaled variable, κ, defined by κ ¼ k�=R1.
Imposing the requirement that the integrand of Eq. (15) is
stationary with respect to z, in the limit as N → ∞, the
dimensionless time for raindrop formation is
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τðκÞ ¼ 1

ζðγÞ
X∞
n¼1

1

κ þ nγ
ð18Þ

[this is a dimensionless version of (16), expressed in terms
of τ ¼ T=hTi ¼ R1T=ζðγÞ]. The entropy function is the
value of the exponent of (15) evaluated at the stationary
point κ which solves (18): in the limit as N → ∞ this is

JðκÞ ¼ SðκÞ − ζðγÞκτðκÞ; ð19Þ

with

SðκÞ ¼
X∞
n¼1

ln ð1þ κn−γÞ: ð20Þ

In general, Eq. (18) must be solved numerically to
determine κ for a given value of τ, but it is possible to
extract asymptotic expressions which are valid for small
and large τ. The small τ asymptotics are determined by
the large κ asymptotics of the sums in Eqs. (18) and (20).
These require some delicate analysis (detailed in the
Supplemental Material [18]), but the methods are standard.
The leading order behavior of SðκÞ is

S ∼ γAðγÞκð1=γÞ − 1

2
lnðκÞ − γCþOðκ−1Þ; ð21Þ

where C is a constant defined in the Supplemental Material
[18], and

AðγÞ ¼ 1

γ

Z
∞

0

dx
x−ðγ−1=γÞ

1þ x
¼ 1

γ
B

�
1 −

1

γ
;
1

γ

�
ð22Þ

[here Bðv; wÞ is the Euler beta function as defined in
Ref. [19]]. Differentiation of SðκÞ yields an expression
equivalent to Eq. (18) relating for τ to κ, which can be
inverted to give an expression for the saddle point

κ� ¼ bτ−ðγ=γ−1Þ½1 − cτð1=γ−1Þ�; ð23Þ

where b and c are functions of γ. In terms of τ, the leading
order terms of the entropy are

JðτÞ ¼ ðγ − 1ÞAbð1=γÞτ−ðγ=γ−1Þ þ γ

2ðγ − 1Þ ln τ þD; ð24Þ

where D is another constant. Furthermore, in terms of τ the
second derivative of the entropy J00 is proportional to
τð2γ−1=γ−1Þ. The probability density is therefore

PðτÞ ¼ Kτ−½3γ−1=2ðγ−1Þ� expð−C=τð1=γ−1ÞÞ; ð25Þ

where C ¼ ðγ − 1ÞAbð1=γÞ and K is another constant which
can be explicitly constructed. For completeness, the
approximation of PðτÞ for N → ∞ and τ ≫ 1 is

PðτÞ ∼ ζðγÞ exp½SðγÞ − ζðγÞτ�;

SðγÞ ¼
X∞
n¼2

lnð1 − n−γÞ: ð26Þ

Figure 1 shows the distribution of τ ¼ T=hTi for the case
γ ¼ 2 (the case which is most relevant to rain showers),
with N ¼ 104 and R1 ¼ 1, comparing the results of
simulation of Eq. (4), the Bromwich integral (15), the
saddle-point approximation, Eqs. (17), (19), (20), and the
explicit asymptotic formulae, Eqs. (25) and (26), which are
all in excellent agreement. A small discontinuity in the
asymptotic expression at τ ¼ 1 marks the switch between
using Eqs. (25) and (26). The entropy function increases
very rapidly as τ → 0, indicating that the value of τ� ¼
t�=hTi is quite insensitive to the value of lnN . It is clear
from Fig. 1 that the solution of Eq. (25) gives small values
of τ� when N � is large. Numerical evaluation of the
solution of Eq. (12) using the Bromwich integral of
PðτÞ with γ ¼ 2 gives τ� ≈ 0.077 whenN � ¼ 105 and τ� ≈
0.068 when N � ¼ 106. Alternatively, in terms of
ht1i ¼ hTi=ζðγÞ, when γ ¼ 2, the predicted time for onset
of a shower is a small fraction of the mean time for the
first collision: t� ≈ 0.128ht1i when N � ¼ 105 and
t� ≈ 0.112ht1i, when N � ¼ 106. These estimates for t�
are compatible with results reported by Kostinski and
Shaw [6].
In the case where γ ¼ 4=3, there is also excellent

agreement between the exact evaluation of PðτÞ using
Eq. (15) and the saddle point approximation. While
Eq. (25) is the precise asymptotic expression for PðτÞ in
the limit as τ → 0, for γ ¼ 4=3 the convergence of this
estimate is not as good as for γ ¼ 2. Reasons for this, and

-10
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-6
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-2

 0

 2

 0  0.5  1  1.5  2

ln
[P

(τ
)]

τ

simulation
Bromwich integral

saddle point approx.
asymptotic approx.

FIG. 1. Plot of ln½PðτÞ�, for N ¼ 104 and γ ¼ 2. The results of
simulation, evaluation of the Bromwich integral, the saddle point
approximation, and the explicit asymptotic formulas, Eq. (25)
(used where τ ≤ 1) and Eq. (26) (used for τ > 1) for all are in
excellent agreement.
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an improved asymptotic approximation that also gives
excellent agreement with simulations at γ ¼ 4=3, are
discussed in the Supplemental Material [18].
Equations (12) and (25) imply that the time scale t� for

the initiation of a shower is smaller than the mean time for a
single collision. Surprisingly, the time scale t� decreases as
the number of collisions required to make a raindrop
increases: as N � → ∞ the dominant term of Eq. (24) as
τ → 0 gives

τ� ∼
1

R1

½lnN ��−ðγ−1=γÞ: ð27Þ

Thus, large deviation theory has resolved an apparent
paradox of meteorology, that rain showers can start very
quickly, on time scales that are short compared to typical
mean collision times.
This calculation does not resolve all of the uncertainties

about initiation of rain showers. Clouds can exist for a long
period without producing a rain shower, before depositing a
significant fraction of their water content over a short time.
Shower activity is associated with convective motion in
clouds. For typical levels of turbulence, however, turbulent
enhancement of collisions does not appear to be sufficient
to trigger showers. It seems as if noncollisional mecha-
nisms involving convection must play a role in initiating the
cascade [20].
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