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The heat transport in a system of S ¼ 1=2 large-J Heisenberg spin chains, describing closely Sr2CuO3

and SrCuO2 cuprates, is studied theoretically at T ≪ J by considering interactions of the bosonized spin
excitations with optical phonons and defects. Treating rigorously the multiboson processes, we derive a
microscopic spin-phonon scattering rate that adheres to an intuitive picture of phonons acting as thermally
populated defects for the fast spin excitations. The mean-free path of the latter exhibits a distinctive T
dependence reflecting a critical nature of spin chains and gives a close description of experiments. By the
naturalness criterion of realistically small spin-phonon interaction, our approach stands out from previous
considerations that require large coupling constants to explain the data and thus imply a spin-Peierls
transition, absent in real materials.
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The one-dimensional (1D) spin chains are among the first
strongly interacting quantum many-body systems ever
studied [1,2], and they remain a fertile ground for new
ideas [3] and for developments of advanced theoretical and
numerical [4,5] methods. A number of physical realizations
of spin-chain materials [6–10] have allowed for unprece-
dentedly comprehensive comparisons between theory,
numerical approaches, and experimental data [11–13].
Current theoretical challenges for these systems include
their dynamical, nonequilibrium, and transport properties
[14–20]. The transport phenomena are particularly chal-
lenging as the couplings to phonons and impurities, pertur-
bations that are extrinsic to the often integrable spin systems,
become crucial [21–26].
In this Letter, we address the problem of heat transport in

1D spin-chain systems by considering coupling of spins to
optical phonons and impurities and having in mind a
systematic, experimental thermal conductivity study in
the high-quality single-crystalline, large-J spin-chain cup-
rates Sr2CuO3 and SrCuO2 that has been recently con-
ducted [27–30]. Several attempts to develop a suitable
formalism to describe this phenomenon have been made in
the past [24–26]. However, these approaches either relied
on unrealistic choices of parameters [24,26] or offered only
qualitative insights [24,25].
Below, we attempt to bridge the gap between experiment

and theory. We argue that the heat conductivity by spin
excitations can be quantitatively described within the boso-
nization framework with the large-momentum scattering by
optical phonons or impurities. For weak impurities, scatter-
ing grows stronger at lower temperature, a feature intimately
related to a critical character of the S ¼ 1=2 Heisenberg
chains [26]. Taking into accountmulti-spin-boson processes,
it follows naturally from our microscopic calculations that

scattering by phonons bears a close similarity to that byweak
impurities, except that the phonons are thermally populated
and thus control heat transport at highT. This is also in accord
with a physical picture of phonons playing the role of
impurities for the fast spin excitations. Within this picture,
the transport relaxation time is the same as spin-boson
scattering time and the corresponding mean-free path fits
excellently the available experimental data. Further system-
atic extensions of our theory to include multiphonon scatter-
ing that can influence thermal conductivity at higher
temperature are briefly discussed.
Finally, we emphasize an important physical constraint

on the strength of spin-phonon coupling of a magnetoe-
lastic nature [31,32], which is weak in the materials of
interest. While an estimate of this coupling can be made
microscopically, a simple piece of phenomenological
evidence for this criterion is the absence of the spin-
Peierls transition in real compounds down to very low
temperatures. Our theory easily satisfies the proposed
constraint, setting itself apart from the previous approaches
[24,26]. We thus provide a microscopic, internally con-
sistent description of thermal transport and scattering in 1D
spin chains, which satisfies naturalness criteria by having
weak spin-phonon coupling and conforming to an analogy
between phonon and impurity scatterings.
Spin-phonon coupling Hamiltonian.—The nearest-

neighbor Hamiltonian of an S ¼ 1=2 Heisenberg chain
magnetoelastically coupled to phonons is

H ¼
X
hiji

Jðri − rjÞSi · Sj; ð1Þ

where hiji denotes nearest-neighbor lattice sites. A stan-
dard Jordan-Wigner transformation with the subsequent
bosonization [11] and the lowest-order expansion in lattice
displacements brings it to the following form:
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H ¼
X
k

εkb
†
kbk þHs-ph; ð2Þ

where bð†Þk represents spin-boson operators of the excitation
with εk ¼ vjkj (sketched in Fig. 1), velocity is v ¼ πJa=2,
k is the 1D momentum, and a is the lattice spacing.
Hamiltonian Hs-ph describes a large-momentum, q ≈Q ¼
π=a, spin-boson scattering by phonons

Hs-ph ¼
2λ

πa2

Z
dxUxðxÞ cosðΦ̂ðxÞ þQxÞ; ð3Þ

where λ ¼ a∂J=∂x, x is the direction along the chains, the
lattice displacement fieldUðxÞ is associated with the optical
and zone boundary phonons, and the spin-boson field
Φ̂ðxÞ ¼ ffiffiffi

π
p P

ke
ikxðb†k þ b−kÞ=

ffiffiffiffiffiffiffiffiffi
Ljkjp

, in which L is the
linear size of the chain and we used the Luttinger-liquid
parameter K ¼ 1=2 for the Heisenberg case [33]. Small-
momentum scattering is deliberately ignored, as the cor-
responding vertex carries small in-plane momentum of the
phonon and leads to negligible scattering effects [26].
We note that boson-boson scattering cannot dissipate the

heat current [21,22,35] and thus is neglected.
Self-energy and relaxation rate.—Assuming the spin-

phonon coupling to be small, a conjecture discussed below
in detail [32], one can consider only the second-order
spin-boson self-energy in Fig. 2(a) given by

ΣkðτÞ ¼ −
2λ2

πa4jkj
Z

dxeikxDðτ; xÞhe−iΦ̂ð0;0ÞeiΦ̂ðτ;xÞi; ð4Þ

where Dðτ; xÞ ¼ hUxð0; 0ÞUxðτ; xÞi is the phonon propa-
gator and the second quantization of the lattice-
displacement field is standard [36]. We exploit the large
value of J compared to a typical Debye energy (in cuprates
J=ΘD ∼ 10), which allows us to neglect dispersion of the
phonon branches near the π point in Fig. 1. Then, the
lattice-displacement correlator is fully local in space [33]
and separates into a sum over phonon branches l that have
nonzero projections of their polarizations, ξxql, on the chain
axis x. Considering for simplicity only one longitudinal
phonon with the energy ω0 (see Fig. 1), and reserving the
right to add more phonon branches later, we obtain
Dðτ; xÞ ¼ aδðxÞFτðω0Þ=2mω0 with

Fτðω0Þ ¼ n0eω0τ þ ðn0 þ 1Þe−ω0τ; ð5Þ
where n0 ¼ 1=ðeω0=T − 1Þ is the phonon distribution func-
tion, m is the mass of the unit cell, and ℏ ¼ kB ¼ 1.
For the bosonic field correlator in the spin-phonon self-

energy (4) in Fig. 2(a), we note an immediate similarity to
the second-order T matrix for the weak impurity scattering
in Fig. 2(b), which also generates a large-momentum
transfer [26]. The correlator can be evaluated at x → 0
and T ≪ J [26,33] and leads to

he−iΦ̂ð0;0ÞeiΦ̂ðτ;0Þi ≈ πT
Jj sinðπTτÞj : ð6Þ

Then, the self-energy at Matsubara frequency ωn is

ΣkðωnÞ ¼ −g2sp
2TJ
ajkj

Z
β

0

dτ
eiωnτ − 1

j sinðπTτÞjFτðω0Þ; ð7Þ

where we introduced a naturally appearing dimensionless
spin-phonon coupling constant gsp ¼ λ=ðaJ ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p Þ
[31,32]. For the spin-boson scattering rate, we need the
imaginary part of the self-energy that is analytically
continued to real frequencies. The transformations allowing
us to perform the integration in Eq. (7) exactly are
delegated to the Supplemental Material [33]. Here, we
simply list the answer,

ImΣkðωÞ ¼ −g2sp
2J
ajkj ð2n0 þ 1Þð1 − fþ − f−Þ; ð8Þ

where f� ¼ 1=ðeω�ω0 þ 1Þ. The fermionic distributions
can be seen as a result of a refermionization of bosons via a
multiple-boson scattering. The result (8) can be expanded
in ω=T, yielding

ImΣkðωÞ ≈ −g2sp
2Jω
ajkjT

1

sinh ðω0=TÞ
; ð9Þ

which holds exceptionally well for all ω≲ T of interest.
Generally, the single-particle scattering rate (9) should
differ from the transport relaxation rate, but for the
impuritylike scattering the two become the same.
Mean-free path.—Then, the on-shell approximation,

ω ¼ εk, in Eq. (9) yields the inverse spin-boson mean-free
path, 1=l ¼ 1=vτ, due to spin-phonon scattering:

FIG. 1. Schematics of the spectra of bosonic excitations in a
large-J, S ¼ 1=2 Heisenberg spin chain (dispersive branch εk ¼
vjkj and a continuum at Q ¼ π) and of the dispersionless optical
phonon branch ω0 (the horizontal line).

(a) (b)

FIG. 2. Multiboson diagrams contributing to the scattering rate
of spin bosons on (a) phonons and (b) weak impurities. Shaded
ellipses represent a set of diagrams involving an arbitrary number
of spin bosons in the intermediate state. Solid and wavy
lines are the Green’s functions of spin bosons and phonons,
respectively.
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�
lsp

a

�
−1

¼ g2sp
2J
T

1

sinh ðω0=TÞ
: ð10Þ

This result is k independent and thus can be compared
directly to the transport mean-free path extracted from
thermal conductivity data [27,29]. We note that the 1=T
prefactor in Eq. (10) is strongly reminiscent of the result for
the scattering on weak impurities [26,37,38]: ðlimp=aÞ−1 ¼
nimpðδJ=JÞ2ðJ=TÞ, where nimp is the concentration of such
impurities and δJ is the strength of impurity potential.
Clearly, this scattering gets stronger with lowering T, down
to the Kane-Fisher scale, TKF ∝ δJ2=J, below which weak
impurity becomes a strong scatterer, similar to a chain
break [39]. This behavior is a consequence of a critical
character of spin chains [26,40]. Since phonons should be
seen as weak impurities by the fast spin excitations, it is
natural that the spin-phonon scattering yields the same 1=T
prefactor in Eq. (10).
While the other thermal factor in Eq. (10), 1= sinhðω0=TÞ,

does not coincide with the phonon population n0, both have
the same high- and low-T asymptotes. For T ≪ ω0, the
mean-free path (10) exhibits activated behavior,lsp ∼ eω0=T ,
similar to the findings of other works [24,25].
In addition to the considered scattering mechanisms, the

low-T spin thermal conductivity in real materials is limited
by strong defects that act like chain breaks [27,28,30]. The
corresponding mean-free path is an average length of a
defect-free chain segment, 1=lb ¼ nb, where nb is the
concentration of these defects.
Comparison with experiments.—Figure 3 shows the T

dependence of the mean-free path of 1D spin excitations in
Sr2CuO3 and SrCuO2 [27,29]. The data are extracted from
the thermal conductivity measurements via a kinetic
relation, lðTÞ ¼ κðTÞ=vCVðTÞ, using theoretical values
[41] for the specific heat of spin chains CVðTÞ [∝ T at
T ≪ J]. Because of high purity, the mean-free path exceeds
103a at low T, with the difference between the two
compounds due to the residual concentrations of the
defects. The two sets of data become quantitatively very
close at higher T, implying that a similar scattering is
dominating propagation of heat in both materials [29].
Figure 3 shows our successful fits of the data by

combining spin-phonon (10) and strong-impurity scatter-
ings, l−1 ¼ l−1

sp þ l−1
b , viaMatthiessen’s rule [27].We note

that the low-T part of the data, T ≲ 40 K, has a large
uncertainty due to the subtraction of the phonon part of the
thermal conductivity (see [27,29]), and that it can be fit with
equal success by a combination of weak and strong
impurities, l−1 ≈ l−1

imp þ l−1
b . Since it is a secondary issue

for our study, the simplest account of this regime by strong
impurities suffices. To fit the spin-boson mean-free path
above 40 K, we assume that the spin bosons are scattered by
two phonon modes with ω0;1 ¼ 300 K and ω0;2 ¼ 740 K.
Of the two, the first roughly corresponds to the longitudinal
zone-boundary phonon and the second to the high-energy
stretching mode [42,43], both likely having the strongest
coupling to spin chains. In Eq. (10) we used the value of

J ¼ 2600 K [44] and the spin-phonon coupling constants
g1;sp ¼ 0.020ð1Þ and g2;sp ¼ 0.10ð1Þ have provided the fit in
Fig. 3 for Sr2CuO3 and SrCuO2. By choosing different
ω0;i’s, one can obtain somewhat different values of the gi;sp’s
needed for the fit, but they never exceed or even reach the
physical bounds discussed next.
Bounds on spin-phonon coupling.—We now discuss

physical bounds on the spin-phonon coupling constant
gsp ¼ λ=ðJa ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p Þ. As discussed in Refs. [31,32], the
constant is a product of two parameters, with one character-
izing the change of J by atomic displacement,
γ ¼ λ=J ¼ að∂J=∂xÞ=J, and the other representing an
amplitude of zero-point atomic motion relative to a lattice
constant [36], α ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2ω0

p
, where ℏ is made explicit

andm is the reduced mass associated with the phononmode
ω0. Parameter α is small, while γ can be large [31,43]
because the superexchange is sensitive to the interatomic
distance. Regarding cuprates, one can estimate α ≈ 0.01.
The superexchange parameter has a larger uncertainty, with
indirect studies giving a range of γ ¼ 3–14 [43,45] and a
consideration of a wider class of materials suggesting an
upper limit of γ ≤ 20 [31]. Thus, the microscopic upper
bound on the spin-phonon coupling constant in 1D cuprates
can be put at gmax

sp ≈ 0.2, justifying the weak-coupling
treatment of the spin-boson scattering on phonons in Eq. (4).
A less restrictive, but purely phenomenological criterion

limiting the strength of the spin-phonon coupling is the
absence of the spin-Peierls transition in 1D cuprates down
to about 5 K (≈0.002J), where the 3D Néel ordering can be
argued to preempt other transitions. Using TP ≈ Je−1=g

2
sp ,

this can be translated to the upper limit on the spin-phonon
coupling gmax

sp ≈ 0.35.
We now offer a critique of the previous considerations of

thermal transport in 1D spin chains. In particular, in
experimental works [27,29,44], the spin-phonon mean-free

0 100 200 300 400
T (K)

10

100

1000
SrCuO 2
Sr2CuO3

nb = 2.5 ×
×

10-4, g1 = 0.0202, g2 = 0.101

nb = 7.3 10-4, g1 = 0.0201, g2 = 0.104

ω1 = 300 K 
ω2 = 740 K 
J = 2600 K

FIG. 3. Mean-free path of spin excitations in Sr2CuO3 and
SrCuO2 [27–29] (the symbols). Lines are theory fits; see the text.
Concentrations of strong impurities, nb, phonon energies,ω0;i, and
spin-phonon coupling constants, gi;sp, are as indicated in the graph.
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path is repeatedly fit by the form l−1
sp ¼ ATe−ω

�=T , with
ω� ≈ 200 K, inspired by the phonon-mediated Umklapp
scenario [24]. First, most of the data in Fig. 3 should be
outside the quantitative accuracy range of this expression,
which is limited to T ≲ ω�=3 ≈ 70 K, as the exponent is
only a low-T limit of the phonon distribution function.
More importantly, translating the values of A used in
Refs. [27,29,44] to the dimensionless coupling constant
via A ¼ g2sp=Ja gives gsp ≈ 1, which is exceedingly large
for the perturbative treatment to hold and lies way outside
the allowed range. This strong coupling also implies a spin-
Peierls transition at TP ∼ J, while no such transition is
observed. Likewise, our previous study, which considered
small-momentum scattering on acoustic phonon branches
[26], required an anomalously strong spin-phonon inter-
action gsp > 1. Thus, there is a serious “naturalness”
problem with previous theoretical considerations.
In the present work, the dimensionless spin-phonon

coupling constants are well within the range of the micro-
scopic expectations for the cuprates, gsp ¼ 0.02–0.1, imply-
ing extremely low spin-Peierls transition temperatures.
While the offered analysis of the physical bounds is not a
proof of the validity of our theory, it is certainly a strong
argument against the validity of the previous approaches,
which require unphysically large spin-phonon coupling.
Multiphonon scattering.—We note that for T ≳ ω0 the

spin-boson mean-free path in Eq. (10) saturates at
ðlsp=aÞ−1 ≈ g2sp2J=ω0. While this is not unphysical, one
can still expect that the other, T-dependent terms may
become important for T ≳ ω0. Corrections of the order
T=J are neglected in our derivation (see [33]) since T=J is
small in the relevant temperature range. Another possible
source of the T dependence is the multiphonon scattering.
Superficially, the two-phonon scattering processes have to
be negligible because of the smallness of the spin-phonon
coupling discussed above. However, there are factors that
can compensate for this smallness. First, the two-phonon
scattering is less restrictive, as the transverse phonons can
also contribute. Second, in the non-Bravais lattices, the
two-phonon processes are also amplified by the number of
atoms in a unit cell, Na. That is, for the single-phonon
processes, the number of longitudinal phonons that couple to
spins via Eq. (3) isNa, of whichwe have chosen only two for
our fits in Fig. 3. On the other hand, when a spin-boson
scattering is due to the emission or absorption of two
phonons, the number of possible processes can be as large
as OðN2

aÞ. A naive and certainly overly optimistic estimate
of their number assuming independent polarization and a
branch index for each phonon involved in the scattering
yields ð3NaÞ2. In cuprates [42], the total number of phonon
modes is large, so this combinatorial factor can be
substantial.
A somewhat tedious, but straightforward algebra

[33] yields the following result for the two-phonon
scattering:

�
lsp;2

a

�
−1

¼ g2sp;2
J
T
cosh ðω0=TÞ
sinh2ðω0=TÞ

; ð11Þ

where g2sp;2 ∝ C2g4sp. When compared to Eq. (10), the result

in Eq. (11) contains an extra factor, g2sp ∼ 0.01, and a large
combinatorial factor, C2. Clearly, at T ≪ ω0, the two-
phonon mean-free path follows the same behavior as
Eq. (10), thus simply renormalizing single-phonon scatter-
ing. However, at T ≳ ω0, it carries an extra power of T=ω0,
ðlsp;2=aÞ−1 ≈ g2sp;2JT=ω

2
0, thus amounting to an expansion

in T=ω0;i, which can be argued to follow naturally from the
multiphonon scattering processes.
Without going into nongeneric microscopic considera-

tions, one can suggest a simple ansatz to account for the
T=ω0;i expansion with the T dependence of the spin-
phonon coupling in the form gsp;iðTÞ ¼ gsp;ið1þ rin0;iÞ,
where n0;i ¼ 1=ðeω0;i=T − 1Þ as before. This form meets
both the low-T and the high-T behavior of the two-phonon
mean-free path discussed above. A fit of the SrCuO2 data
using this ansatz with ri ¼ 1 is provided in Fig. 4. The bare
spin-phonon coupling constants gi;sp are even smaller than
in Fig. 3, especially for the higher-energy mode. The result
with the bare gi;sp’s is provided for comparison. Although
this figure is an illustration showing that our theory allows
for systematic extensions by including multiphonon proc-
esses, it also demonstrates a potential role of the latter in the
T ≳ ω0 regime and thus contributes to the general descrip-
tion of the heat transport in spin-chain materials.
Conclusions.—We have provided a consistent micro-

scopic theory for thermal transport and scattering in 1D
spin chains which stands out from previous attempts at such
a theory by having weak spin-phonon coupling and
conforming to the analogy of the phonon scattering to that
on impurities. We have successfully fit the available
experimental data and discussed possible extensions of
our theory for higher T. Our approach should be applicable
to the thermal conductivity in spin-ladder materials and can

0 100 200 300 400
T (K)

10

100

1000
SrCuO2
with T dependence in g’s

nb = 2.5 × 10-4 , g1 = 0.0195, g2 = 0.067

ω1 = 300 K 
ω2 = 650 K 
J = 2600 K

FIG. 4. Same as in Fig. 3. The solid line includes T dependence
in the spin-phonon coupling; see the text.
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be extended to the transport phenomena in a variety of
Luttinger liquids and ultracold atomic gases. Numerical
verification of our results is also called for.
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