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We study the effects of electron doping in Mott insulators containing d4 ions such as Ru4þ, Os4þ, Rh5þ,
and Ir5þ with J ¼ 0 singlet ground state. Depending on the strength of the spin-orbit coupling, the undoped
systems are either nonmagnetic or host an unusual, excitonic magnetism arising from a condensation of the
excited J ¼ 1 triplet states of t42g. We find that the interaction between J excitons and doped carriers
strongly supports ferromagnetism, converting both the nonmagnetic and antiferromagnetic phases of the
parent insulator into a ferromagnetic metal, and further to a nonmagnetic metal. Close to the ferromagnetic
phase, the low-energy spin response is dominated by intense paramagnon excitations that may act as
mediators of a triplet pairing.
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A distinct feature of Mott insulators is the presence of
low-energy magnetic degrees of freedom, and their coupling
to doped charge carriers plays the central role in transition
metal compounds [1]. In large spin systems like manganites,
this coupling converts parent antiferromagnet (AF) into a
ferromagnetic (FM) metal and gives rise to large magneto-
resistivity effects. The doping of spin one-half compounds
like cuprates and titanites, on the other hand, suppresses
magnetic order and a paramagnetic (PM) metal emerges. In
general, the fate of magnetism upon charge doping is
dictated by the spin-orbital structure of parent insulators.
In compounds with an even number of electrons on the d

shell, one may encounter a curious situation when the ionic
ground state has no magnetic moment at all, yet they may
order magnetically by virtue of low-lying magnetic levels
with finite spin, if the exchange interactions are strong
enough to overcome the single-ion magnetic gap. The d4

ions such as Ru4þ, Os4þ, Rh5þ, Ir5þ possess exactly this
type of level structure [2] due to spin-orbit coupling
λðS · LÞ: the spin S ¼ 1 and orbital L ¼ 1 moments form
a nonmagnetic ground state with total J ¼ 0 moment,
separated from the excited level J ¼ 1 by λ. A competition
of the exchange and spin-orbit couplings results then in a
quantum critical point (QCP) between the nonmagnetic
Mott insulator and the magnetic order [3,4]. Since the
magnetic order is due to the condensation of the virtual
J ¼ 1 levels and hence “soft,” the amplitude (Higgs) mode
is expected. The corollary of the “d4 excitonic magnetism”
[3] is the presence of the magnetic QCP that does not
require any special lattice geometry, and the energy scales
involved are large. The recent neutron scattering data [5] in
d4 Ca2RuO4 seem to support the theoretical expectations.
As we show in this Letter, the unusual magnetism of d4

insulators, where the soft J spins fluctuate between 0 and 1,
results also in anomalous doping effects that differ dras-
tically from conventional cases as manganites and cuprates.

Indeed, while common wisdom suggests that the PM phase
with yet uncondensed J moments near QCP would get even
“more PM” upon doping, we find that mobile carriers
induce long-range order instead. The order is of the FM
type and is promoted by the carrier-driven condensation
of J moments. By the same mechanism, the exchange
dominated AF phase also readily switches to the FM metal,
as observed in La-doped Ca2RuO4 [6,7]. The theory might
be relevant also to the electric-field-induced FM of
Ca2RuO4 [8] and the FM state of the RuO2 planes in
oxide superlattices [9]. Further doping suppresses any
magnetic order, and we suggest that residual FM correla-
tions may lead to a triplet superconductivity (SC).
Model.—There are a number of d4 compounds, magnetic

as well nonmagnetic, with various lattice structures [10–17].
To be specific, we consider a square lattice d4 insulator
lightly doped by electrons. Assuming relatively large spin-
orbit coupling (SOC), the relevant states are pseudospin
J ¼ 0, 1 states of t42g and J ¼ 1=2 states of t52g [see Fig. 1(a)].
The d4 singlet s (J ¼ 0) and triplon T0;�1 (J ¼ 1) states
obey the Hamiltonian derived in Ref. [3]. Adopting the
Cartesian basis Tx ¼ ðT1 − T−1Þ=

ffiffiffi
2

p
i, Ty ¼ ðT1 þ T−1Þ=ffiffiffi

2
p

, and Tz ¼ iT0, it can be written as

Hd4 ¼ λ
X

i

T†
i · Ti þ

1

4
K
X

hiji

�

sis
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�
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3
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�
5

6
Ti · Tj −

1

6
TiγTjγ

�

þ H:c:

�

; ð1Þ

where γ is determined by the bond direction. The model
shows the AF transition due to a condensation of T at a
critical value Kc ¼ 6

11
λ of the interaction parameter

K ¼ 4t20=U. The degenerate Tx;y;z levels split upon
material-dependent lattice distortion, affecting the details
of the model behavior [18]. We will consider the cubic
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symmetry case and make a few comments on the possible
effects of the tetragonal splitting.
The d4 system is doped by introducing a small number of

d5 objects—fermions fσ carrying the pseudospin J ¼ 1=2
of t52g. The on-site constraint ns þ nT þ nf ¼ 1 is implied.
The Hamiltonian describing the correlated motion of f is
derived by calculating matrix elements of the nearest-
neighbor hopping T̂ij ¼ −t0ða†iσajσ þ b†iσbjσÞ between mul-
tielectron configurations hd5i d4j jT̂ijjd4i d5ji. Here, a and b are
the t2g orbitals active on a given bond, e.g., xy and zx for x
bonds. The resulting hopping Hamiltonian comprises three

contributions, Hd4−d5 ¼
P

ijðh1þh2þh3ÞðγÞij . The first one,
depicted schematically in Figs. 1(b) and 1(c), is a spin-
independent motion of f, accompanied by a backflow of s
and T:

hðγÞ1 ¼ −tf†iσfjσ
�

s†jsi þ
15

16

�

T†
j · Ti −

3

5
T†
jγTiγ

��

: ð2Þ

The second contribution is a spin-dependent motion of f
generating J ¼ 0 ↔ J ¼ 1 magnetic excitation in the d4

background [see Fig. 1(d)]:

hðγÞ2 ¼ i~t

�

σγijðs†jTiγ − T†
jγsiÞ −

1

3
σij · ðs†jTi − T†

jsiÞ
�

: ð3Þ

Here, σij ¼ f†iαταβfjβ with Pauli matrices τ denotes the
bond-spin operator. The derivation for the cubic symmetry
gives t ¼ 4

9
t0 and ~t ¼ ð1= ffiffiffi

6
p Þt0 with the ratio ~t=t ≈ 1.

However, these values are affected by the lattice distortions
(via the pseudospin wave functions) and f-band renormal-
ization reducing the effective t. We thus consider ~t=t as a free
parameter and set ~t ¼ 1.5t below. The last contribution to
Hd4−d5 reads as coupling between the bond spins residing

in f and T sectors: hðγÞ3 ¼ 9
16
tðσγijJγji þ 1

3
σij · JjiÞ, where

Jji ¼ −iðT†
j × TiÞ. At small doping and near QCP where

the density of T excitons is small, the scattering term h3 can
be neglected.
Phase diagram.—We first inspect the phase behavior of

the model as a function of doping x and interaction
parameters K and ~t. The magnetic order is linked to the
condensation of triplons induced by their mutual inter-
actions and the interaction with the doped fermions f. In
contrast to the cubic lattice where all the T flavors are
equivalent, on the two-dimensional square lattice the Tz
flavor experiences the strongest interactions and is selected
to condense, provided that it is not suppressed by a large
tetragonal distortion. We thus focus on Tz and omit the
index z.
Following the standard notation for spin-1 condensates,

we express complex T ¼ uþ iv using two real fields u, v.
The ordered dipolar moment residing on Van Vleck
transition s↔T is then m ¼ 2

ffiffiffi
6

p
v [3]. Assuming either

FM order (condensation prescribed by T → iv) or AF order
(T → �iv in a Néel pattern), we evaluate the classical
energy of the T condensate and add the energy of the f
bands polarized due to the condensed T. Doing so, we
replace si by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − v2

p
to incorporate the constraint, on

average. The resulting total energy EðvÞ ¼ ET þ Eband is
minimized with respect to the condensate strength v
and compared for the individual phases: FM, AF, and
PM (v ¼ 0). The condensate energy amounts to ET ¼
½λ� 11

6
Kð1 − x − v2Þ�v2, with the þ (−) sign for FM (AF)

phase, respectively. The band energy Eband ¼
P

kσεkσnkσ is
calculated for a particular doping level x ¼ P

kσnkσ using
the band dispersion εkσ ¼ −4ðt1 − σt2Þγk, where γk ¼
1
2
ðcos kx þ cos kyÞ. The hopping parameter t1 stemming

from h1 reads as t1 ≃ tð1 − xÞ and t1 ≃ tð1 − x − 2v2Þ for
FM and AF, respectively. This captures the double-
exchange nature of h1—only FM-aligned T allow for a
free motion of f, while the AF order of T blocks it.
The parameter t2 quantifies the polarization of the bands by
virtue of h2 and is nonzero in the FM case
only: t2 ¼ 2

3
~tv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − v2

p
.

Shown in Fig. 2 are the resulting phase diagrams along
with the total ordered moment m½μB� ¼ 2

ffiffiffi
6

p
vþ n↑ − n↓.
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FIG. 1. (a) Spin-orbital level structure of t42g and t52g configu-
rations. The lowest states including singlet s and triplet TM states
of d4, and pseudospin 1=2 fσ states of d5 configurations form a
basis for the effective low-energy Hamiltonian. (b)–(d) Sche-
matics of electron hoppings that lead to Eqs. (2) and (3): (b) Free
motion of a doped fermion fσ in a singlet background. (c) The
fermion hopping is accompanied by a triplon backflow support-
ing the double-exchange type ferromagnetism. (d) Fermionic
hopping generates a singlet-triplet excitation. This process leads
to a coupling between the Stoner continuum and T moments
promoting magnetic condensation.
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In both phase diagrams for constant ~t=λ [Figs. 2(a) and 2(b)]
at x ¼ 0 we recover the QCP of the d4 model. Nonzero
doping causes a suppression of the AF phase via the double-
exchange mechanism in h1, and an appearance of the FM
phase strongly supported by h2 that directly couples the
moment m ∼ v of T exciton to the fermionic spin σij,
promoting magnetic condensation. With an increasing ~t the
FM phase quickly extends as seen also in Figs. 2(c) and 2(d)
containing the phase diagrams for constant K=λ ¼ 0.65
(selected to roughly reproduce the experimental value 1.3 μB
for Ca2RuO4 [19]) and K=λ ¼ 0.30. The constant ~t=λ cut in
Fig. 2(c) is strongly reminiscent of the phase diagram of
La-doped Ca2RuO4 [6,7,20], where the AF phase is almost
immediately replaced by the FM phase present up to a
certain doping level. To estimate realistic values of ~t=λ, we
assume t0 ∼ 300 meV. The large SOC in d4 Ir5þ with λ ∼
200 meV [22–24] leads to ~t=λ ∼ 1 and places it strictly to the
AF/PM (c) or PM/PM (d) regime. In contrast to this, the
moderate λ ∼ 70–80 meV in Ru4þ [2,25] makes the FM
phase easily accessible.
Spin susceptibility, emergence of paramagnons.—The

tendency toward FM ordering naturally manifests itself
in the dynamic spin response of the coupled T exciton and
f-band system. Here we study it in detail for the PM phase,
focusing again on Tz being the closest to condense. The
magnetic moment m is carried mainly by the dipolar

component v ¼ ðT − T†Þ=2i of triplons so that the dominant
contribution to the spin susceptibility is given by the v
susceptibility χðq;ωÞ. To evaluate it, we replace si →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − nTi

p
, and decouple h1 (3) into f and T parts on

a mean-field level. This yields a fermionic Hamiltonian
Hf ¼

P
kσεkf

†
kσfkσ with εk ¼ −4tð1 − xÞγk, and a quad-

ratic form for Tz boson: HT ¼ P
q½AqT

†
qTq − 1

2
Bq

ðTqT−q þ T†
qT

†
−qÞ�. Here, Aq ¼ λþ 4thnijið1 − γqÞþ

Kð1 − xÞγq, Bq ¼ 5
6
Kð1 − xÞγq, and hniji ¼

P
kσγknkσ.

Bogoliubov diagonalization provides the bare triplon
dispersion ωq ¼ ðA2

q − B2
qÞ1=2 and the bare v susceptibility

χ0ðq;ωÞ ¼ 1
2
ðAq − BqÞ=½ω2

q − ðωþ iδÞ2�. The susceptibil-
ity is further renormalized by the coupling h2 (3), which can
be viewed as an interaction between a dipolar component v
of the triplons and the Stoner continuum of f fermions:

Hint ¼ g
X

q

vq ~σ−q; ~σ−q ¼
X

k

Γkqf
†
kþq;ατ

z
αβfk;β: ð4Þ

The coupling constant g ¼ 8
3
~t

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
, and the vertex Γkq ¼

1
2
ðγk þ γkþqÞ is close to 1 in the limit of small k, q.

By treating this coupling on a RPA level, we arrive at the
full v susceptibility χ ¼ χ0=ð1 − χ0ΠÞwith the v self-energy

Πðq;ωÞ ¼ g2
X

kσ

Γ2
kq

nkσ − nkþqσ

εkþq − εk − ω − iδ
: ð5Þ

The interplay of the coupled excitonic and band spin
responses is demonstrated in Fig. 3. The high-energy
component of χ linked to χ0 follows the bare triplon
dispersion ωq. In an undoped system, due to the AF K
interaction, ωq has a minimum at q ¼ ðπ; πÞ and χ0 would
be most intense there. By doping, the double exchange
mechanism in h1 disfavoring AF correlations pushes ωq up
near ðπ; πÞ. Further, due to a dynamical mixing [Eqs. (3)
and (4)] of triplons with the fermionic continuum, the low-
energy component of χ gains spectral weight as ~t=λ
approaches the critical value, and a gradually softening
FM paramagnon is formed [see Fig. 3(b)]. The emergence
of the paramagnon and the increase of its spectral weight is
shown in detail in Fig. 3(e). Finally, once the critical ~t=λ is
reached, triplons, whose spectral weight was pulled down
by the coupling to the Stoner continuum, condense and
the FM order sets in, signaled by the divergence of
χðq ¼ 0;ω ¼ 0Þ [cf. Figs. 3(c) and 3(d)].
Triplet pairing.—Intense paramagnons emerging in the

proximity to the FM phase may serve as mediators of a
triplet pairing interaction [26]. In the following, we perform
semiquantitative estimates for this triplet SC.
While the dominant contribution to the pairing

strength is due to the vz fluctuations, in order to assess
the structure of the triplet order parameter, the full coupling
Hint ¼ g

P
qvq · ~σ−q leading to the effective interaction

− 1
2
g2
P

qαχαðq;ω ¼ 0Þ ~σαq ~σα−q has to be considered. The
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FIG. 2. (a),(b) Phase diagrams and the ordered magnetic
moment value for varying doping x and K=λ keeping fixed
~t=λ of 1.7 and 2.5. (c) Phase diagram for varying doping and ~t=λ
and fixed K ¼ 0.65λ above the critical Kc ¼ 6

11
λ of the d4

system. The bottom panel shows mðxÞ along the cut at
~t=λ ¼ 3.5. (d) The same for K ¼ 0.3λ and the cut at ~t=λ ¼ 3.

PRL 116, 017203 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

017203-3



vα susceptibility χα for α ¼ x, ymay be calculated the same
way as χz above, using now Aα

q ¼ Az
q þ ½6

5
thniji − 1

6
K

ð1 − xÞ� cos qα and Bα
q ¼ Bz

q − 1
12
Kð1 − xÞ cos qα. The cou-

pling vertex for vx and vy obtains an additional contribution,
Γα
kq ¼ Γz

kq −
3
4
½cos kα þ cosðkα þ qαÞ�. The resulting BCS

interaction in terms of tþ1k ¼ fk↑f−k↑, t0k ¼ 1ffiffi
2

p ðfk↓f−k↑
þfk↑f−k↓Þ, and t−1k ¼ fk↓f−k↓ takes the form

HBCS ¼ −
1

2

X

kk0
½Vzðt†1t1 þ t†−1t−1Þkk0

þ ðVx − VyÞðt†1t−1 þ t†−1t1Þkk0
þ ðVx þ Vy − VzÞt†0kt0k0 �; ð6Þ

where Vα denotes the properly symmetrized Vαkk0 ¼
g2ðΓα

k;k0−kÞ2 1
2
½χαðk − k0Þ − χαðkþ k0Þ�. Decomposed into

the Fermi surface harmonics, the BCS interaction is
well approximated by Vzkk0 ≈ 2V0 cosðϕk − ϕk0 Þ and
ðVx − VyÞkk0 ≈ 2V1 cosðϕk þ ϕk0 Þ with V0;1 > 0 [see

Figs. 3(d) and 4(a)]. The relatively small V1 ≪ V0 fixes
the relative phase of the tþ1 and t−1 pairs so that the SC order
parameter becomes Δ�1k ¼ Δe�iϕk . This ordering type is
captured by thedvectord ¼ −iΔðsinϕk; cosϕk; 0Þ ∼ x̂ky þ
ŷkx shown in Fig. 4(b). In the classification of Ref. [28], it
forms the Γ−

4 irreducible representation of tetragonal group
D4h.However, this result applies to the cubic symmetry case.
Lattice distortions that cause splitting among Tx;y;z and
modify the pseudospin wave functions may in fact offer a
possibility to “tune” the symmetry of the order parameter.
If distortions favor Tx;y, the potentials Vx;y are expected to
dominate in Eq. (6), supporting the chiral t0 pairing repre-
sented by the last term in (6).
Data in Figs. 4(c) and 4(d) serve as a basis for a rough Tc

estimate. Figure 4(c) shows the BCS parameter λBCS ≈ V0N
(N is DOS per spin component of the f band) which attains
sizable values near the FM phase boundary, where the
paramagnons are intense. To avoid complex physics near the
very vicinity of the FMQCP [29–31], we take a conservative
upper limit λBCS ≈ 0.5. Extending V0 by the ω dependence
of the underlying χzðq;ωÞ, we define λBCSðωÞ. Its imaginary
part to be understood as the conventional α2F is plotted in
Fig. 4(d) yielding an estimate of the BCS cutoff Ω≲ 0.1λ.
With λ ∼ 100 meV, this gives Tc ≈ Ωe−1=λBCS of about 10 K.
In conclusion, we have explored the doping effects in

spin-orbit d4 Mott insulators. The results show that the
doped electrons moving in the d4 background firmly favor
ferromagnetism, explaining, e.g., the observed behavior of
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(c),(d) The static susceptibility corresponding to panels (a) and
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La-doped Ca2RuO4. In the paramagnetic phase near the
FM QCP, the incipient FM correlations are manifested by
intense paramagnons that may provide a triplet pairing.
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