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We investigate the heat conductivity κ of the Heisenberg spin-1=2 ladder at finite temperature covering
the entire range of interchain coupling J⊥, by using several numerical methods and perturbation theory
within the framework of linear response. We unveil that a perturbative prediction κ ∝ J−2⊥ , based on simple
golden-rule arguments and valid in the strict limit J⊥ → 0, applies to a remarkably wide range of J⊥,
qualitatively and quantitatively. In the large J⊥ limit, we show power-law scaling of opposite nature,
namely, κ ∝ J2⊥. Moreover, we demonstrate the weak and strong coupling regimes to be connected by a
broad minimum, slightly below the isotropic point at J⊥ ¼ J∥. Reducing temperature T, starting from
T ¼ ∞, this minimum scales as κ ∝ T−2 down to T on the order of the exchange coupling constant. These
results provide for a comprehensive picture of κðJ⊥; TÞ of spin ladders.
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Introduction.—Thermodynamic properties of quantum
many-body systems are well understood, particularly in the
vicinity of integrable points [1]. In contrast, the vast
majority of dynamical questions in these systems remain
a challenge to theoretical and experimental physics as well,
in the entire range from weak to strong breaking of
integrability. These questions consist of several timely
and important issues such as eigenstate thermalization
[2–4] in cold atomic gases and, as studied in this Letter,
quantum transport and relaxation in condensed-matter
materials. In this context, a fundamental system is the
one-dimensional spin-1=2 Heisenberg model. It is relevant
to the physics of quasi-1D quantum magnets [1], cold
atoms in optical lattices [5], nanostructures [6], and to
physical situations in a much broader context [7,8].
As is typical for integrable systems, the energy current in

the spin-1=2 Heisenberg chain is a strictly conserved
quantity [9,10]. This implies purely ballistic flow of heat
at any temperature and provides the theoretical basis for
explaining the colossal magnetic heat conduction observed
experimentally in quasi-1D cuprates [11–14]. In contrast
to heat flow, spin dynamics, including the existence of
ballistic [15–27] and diffusive transport channels [28–33],
is theoretically resolved only partially, and is also under
ongoing experimental scrutiny [34–38].
Because of strict energy-current conservation in this

model, the heat conductivity κ is highly susceptible to
breaking of integrability by, e.g., spin-phonon coupling
[39–41], dimerization or disorder [42–44], and interactions
between further neighbors [45,46]. One of the most

important perturbations is interchain coupling, i.e., J⊥,
which is the key ingredient to spin-ladder compounds
[11,12]. Since the discovery of the discontinuous transition
from one to two dimensions in quantum magnets [47], spin
ladders are a cornerstone of correlated electron systems.
They display quantum confinement [48], transforming
gapless spinons of simple spin chains into new massive
triplons [49,50]. They provide insights into fractionaliza-
tion, quantum phase transitions [51], Bose-Einstein con-
densation [52], and disorder-induced magnetism [53]. They
are paradigmatic to high-TC superconductors, undoped
[54] and doped [55]. They serve as models in other fields,
e.g., cold atomic gases [56], quantum information theory
[57], and carbon nanotubes [58].

FIG. 1. Thermal conductivity κ (per chain) versus J⊥=J∥ and β.
PT, known perturbative regime. Issues clarified in this Letter are
as follows: extent of power-law scaling (dashed line) close to PT
and sum-rule (SR) regimes, nonperturbative numerical treatment
for entire J⊥ range, location of minimal conductivity, and
temperature variation.
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Early on, perturbation theory (PT) to lowest order, i.e., a
simple golden-rule argument [59,60], suggested dissipative
heat flow with a scaling κ ∝ J−2⊥ , as illustrated on the lhs of
Fig. 1. However, the relevance of such scaling is unclear off
the strict limit J⊥ → 0, as is the radius of convergence of
the PT. Understanding κ over a wider J⊥ range has been
hampered by the lack of sufficiently accurate nonperturba-
tive methods. In particular, state-of-the-art numerical meth-
ods have been restricted to the regime J⊥ ¼ Oð1Þ, where
finite-size effects are moderate and spectral structures are
broad [61]; i.e., time scales are short [62]. Thus, heat
transport in the transition from weakly coupled chains to
strongly coupled ladders is understood only in few and
narrow regions.
In this Letter, we lift these restrictions and study the heat

conductivity κ over the entire range of the interchain
coupling J⊥. Using several methods within linear response,
we (a) quantitatively connect to PT in the small-J⊥ limit
and (b) unveil its validity for a remarkably wide range of
J⊥. In addition to the PT, scaling as κ ∝ J−2⊥ , we (c) dem-
onstrate a qualitatively different power-law scaling κ ∝ J2⊥
in the large-J⊥ limit. Consequently, we (d) find a broad
minimum of κ in the region J⊥ ≲ 1. Reducing temperature
T, starting from T ¼ ∞, this minimum (e) scales as
κ ∝ T−2 down to T on the order of the exchange coupling.
Thus, we provide a comprehensive picture of κðJ⊥; TÞ,
beyond the known results sketched as part of Fig. 1.
Model.—We study a Heisenberg spin-1=2 ladder of

length N=2 with periodic boundary conditions. The
Hamiltonian H ¼ H∥ þH⊥ consists of a leg part H∥
and a rung part H⊥,

H∥ ¼ J∥
Xz

k¼1

XN=2

i¼1

Si;k · Siþ1;k; H⊥ ¼ J⊥
XN=2

i¼1

Si;1 · Si;2;

ð1Þ
where Si;k are spin-1=2 operators at site ði; kÞ, J∥ > 0 is the
antiferromagnetic leg coupling, and J⊥ > 0 is the rung
interaction. z ¼ 2 is the number of legs. For J⊥ ¼ 0, the
ladder splits into integrable chains, with a gapless ground
state and spinon excitations. For J∥ ¼ 0, it simplifies to
uncoupled dimers, with a gapped ground state and triplon
excitations. For J⊥, J∥ ≠ 0, the ladder is nonintegrable.
Generally, the model in Eq. (1) preserves the total mag-
netization Sz and is translationally invariant. We focus on
the representative sector Sz ¼ 0 [63].
The energy current has the well-known form j ¼ j∥ þ j⊥

[61],

j∥ ¼ J2∥
Xz
k¼1

XN=2

i¼1

Si−1;k · ðSi;k × Siþ1;kÞ;

j⊥ ¼ J∥J⊥
2

Xz
k¼1

XN=2

i¼1

ðSi−1;k − Siþ1;kÞ · ðSi;k × Si;3−kÞ: ð2Þ

j and H commute only at the integrable point J⊥ ¼ 0.
We investigate the autocorrelation function at inverse
temperatures β ¼ 1=T,

CðtÞ ¼ Re
hjðtÞji
N

¼ Re
Trfe−βHjðtÞjg
NTrfe−βHg ; ð3Þ

where the time argument of jðtÞ refers to the Heisenberg
picture, j ¼ jð0Þ, and Cð0Þ ¼ 3ðJ4∥ þ J2∥J

2⊥=2Þ=32 for
βJ∥ → 0.
From CðtÞ, we first determine the Fourier transform

CðωÞ and then the conductivity via the low-frequency limit
κ=z ¼ β2Cðω → 0Þ. Additionally, we can extract the con-
ductivity directly by κ=z ¼ β2

R t1
0 dtCðtÞ. Here, the cutoff

time t1 has to be chosen much larger than the relaxation
time τ, where CðτÞ=Cð0Þ ¼ 1=e [64].
Methods.—We calculate C by complementary numerical

methods, with a particular focus on dynamical quantum
typicality (DQT) [25,26,65] (see also Refs. [66–74]). DQT
relies on the time-domain relation

CðtÞ ¼ Re
hΦβðtÞjjjφβðtÞi
NhΦβð0ÞjΦβð0Þi

þ ϵ; ð4Þ

jΦβðtÞi¼e−ιHt−βH=2jψi, jφβðtÞi ¼ e−ιHtje−βH=2jψi, where
jψi is a single pure state drawn at random and ϵ scales
inversely with the partition function; i.e., ϵ is exponentially
small in the number of thermally occupied eigenstates
[25,26,65]. The great advantage of Eq. (4) is that it can be
calculated without any diagonalization by the use of
forward-iterator algorithms. We use a fourth-order
Runge-Kutta iterator with a discrete time step
δtJ∥ ¼ 0.01 ≪ 1. Together with sparse-matrix representa-
tions of operators, we can reach systems sizes as large as
N ¼ 32. For more details on the method and its accuracy,
see Refs. [26,63].
Additionally, we confirm our DQT results with numeri-

cal methods based on Lanczos diagonalization in the
frequency domain [75], with the frequency resolution δω
crucially depending on the number of Lanczos steps M,
δω ∝ 1=M. At low T, we choose the finite-T Lanczos
method (FTLM) withM ∼ 200 [63]. At high T, we also use
the microcanonical Lanczos method (MCLM) with
M ∼ 2000, significantly improving δω.
Results.—We begin with J⊥=J∥ ≥ 1 and βJ∥ → 0. In

Fig. 2(a) we summarize our DQT results on CðtÞ for
different J⊥=J∥ ¼ 1, 1.5, 2. Several comments are in order.
First, the initial value Cð0Þ agrees with the high-T sum rule
and therefore increases with J⊥. Second, all CðtÞ depicted
decay to zero on a time scale 5τ ∼ 10=J∥. Third, the CðtÞ
curves do not change when the number of sites is increased
from N ¼ 22 to 32. Thus, we observe very little finite-size
effects; i.e., we can safely consider our results as results on
CðtÞ for N → ∞. Note that for N ≥ 30 we consider a single
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translation subspace k since, for these N, CðtÞ is k
independent at β → 0 [25,26].
Next, we discuss the spectrum CðωÞ. To this end, we

show in Fig. 2(b) for J⊥=J∥ ¼ 1, 2 the Fourier transform of
our DQT data for times t ≤ 10τ ∼ 20=J∥. These times
correspond to a frequency resolution δω ∼ 0.15J∥. For this
resolution, the Fourier transform is a smooth function of ω
and displays a well-behaved limit for ω → 0; i.e.,
Cðω → 0Þ ¼ Cðω ¼ 0Þ. Moreover, this limit and CðωÞ
in general do not depend on system size for N ≥ 22.
The inset of Fig. 2(b) clarifies the impact of theω resolution
by displaying additional Fourier transforms of DQT data,
evaluated for shorter (t ≤ 5τ) and longer (t ≤ 50τ) times at
J⊥=J∥ ¼ 1 and for the largest N ¼ 32. Clearly, the low-ω
limit is independent of the ω resolution resulting from
the specific choice of t. This robustness, together with
the N independence, allows us to reliably extract a
quantitative value for the dc conductivity at J⊥=J∥ ¼ 1,
κ=zβ2J3∥ ¼ 0.29.
To additionally demonstrate the validity of our DQT

approach, we compare to our FTLM results and to existing
MCLM spectra from the literature [61] in Fig. 2(b).
Obviously, the agreement is very good.
Now, we turn to small J⊥=J∥ < 1. In Fig. 3(a) we

depict our DQT results on CðtÞ for various J⊥=J∥ ¼
0.15;…; 0.75. The initial value Cð0Þ approaches the
J⊥ ¼ 0 sum rule when J⊥ is reduced. Furthermore, the
decay is slower for smaller J⊥ and finite-size effects are

naturally stronger in the vicinity of the integrable point
J⊥ ¼ 0. For the smallest J⊥=J∥ ¼ 0.15 depicted, these
finite-size effects are still moderate when comparing CðtÞ
for N ¼ 22, 30. In Fig. 3(b) we show the Fourier transform
of Cðt ≤ 5τ ∼ 80J∥Þ for J⊥=J∥ ¼ 0.25. For the largest
N ¼ 32, this Fourier transform is well described by a
Lorentzian line shape and, again, the low-ω limit does not
depend on t. Since CðωÞ has a narrow spectrum, MCLM
with a high ω resolution (M ¼ 2000) is a better choice for
comparison than FTLM (M ¼ 200) [63], and agrees well
with DQT. Note that resolving narrow spectral features by
DQT is a new concept of our Letter, which can be applied in
a much broader context.
Next, we discuss the scaling of the conductivity κ over

the entire range of J⊥. In Fig. 4(a) we summarize κðJ⊥Þ as
inferred from DQT data for Cðt ≤ 5τÞ. Here, we observe a
broad minimum of κðJ⊥Þ, centered between two regimes
with power-law scaling at large and small J⊥. The scaling
∝ J2⊥ in the large-J⊥ limit is a direct consequence of the
static sum rule Cð0Þ ∝ J2⊥, noted following Eq. (3). The
scaling ∝ J−2⊥ for small J⊥, however, is not simply related
to Cð0Þ since Cð0Þ ≈ const for such J⊥. Particularly, we
find this scaling to hold over a remarkably wide range of
0.07 ≤ J⊥=J∥ ≲ 0.35. This finding is a central result of this
Letter. Below J⊥=J∥ < 0.07, computational efforts for 5τ
data are very high and finite-size effects are too large, even
for N accessible to DQT.
To gain further insight into the scaling at small J⊥, we

calculate the scattering rate γ ¼ 1=τ to lowest order in J⊥,

FIG. 2. (a) t and (b) ω dependence of the autocorrelation C for
strong J⊥=J∥ ≥ 1, βJ∥ → 0, and N ≤ 32, as obtained from
DQT. Spectra in (b) are obtained by Fourier transforming
finite-t data t ≤ 10τ ∼ 20=J∥ (symbols). Inset: Low-ω limit for
J⊥=J∥ ¼ 1, the largest N ¼ 32, and t ≤ 5τ (crosses), 10τ (other
symbols), 50τ (curves). Main panel: Spectra from Lanczos
methods (N ¼ 28 MCLM of Ref. [61], N ¼ 22 FTLM) are
shown (curves). Note that method-related errors are negligibly
small [63].

FIG. 3. (a) The t dependence of C for various small
J⊥=J∥ ¼ 0.15;…; 0.75, obtained from DQT for βJ∥ → 0 and
N ≤ 30. (b) Spectrum for J⊥=J∥ ¼ 0.25, obtained by Fourier
transforming finite-t data t ≤ 5τ ∼ 80=J∥ (symbols). Inset:
Low-ω limit for the largest N ¼ 32 and t ≤ 5τ (diamonds),
10τ (crosses). Main panel: Spectrum from N ¼ 22 and 28
MCLM and a Lorentzian fit are shown (curves).
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i.e., J2⊥, following the PTs in Refs. [59,60,76,77]. This rate
reads (βJ∥ → 0)

γ ¼ lim
t1→∞

Z
t1

0

dt∥
Trfι½j∥; H⊥�ðt∥Þι½j∥; H⊥�g

Trfj2∥g
∝ J2⊥; ð5Þ

where t∥ refers to the Heisenberg picture ofH∥. Figure 4(b)
shows γ evaluated by DQT applied to Eq. (5) for large
N ≤ 30. Note that this application of DQT is a new concept
of our Letter [63]. As shown in Fig. 4, we find good
agreement with previous evaluation of γ in Ref. [59] based
on smaller systems. Most notably, however, γ well agrees
with the scattering rate γ0 as extracted directly from κ in
Fig. 4(a) via the relation γ0 ¼ zβ2Cð0Þ=κ. This agreement is
another main result of our Letter. Note that PT holds up to
J⊥=J∥ ∼ 1 for the simplified current j ¼ j∥, see Fig. 4(a),
which is the regime where the system is Markovian, i.e.,
has no memory. For the explicit calculation of the memory
kernel, see Ref. [63].
Now we turn to βJ∥ ≠ 0, focusing on J⊥=J∥ ¼ 1. In

Fig. 5(a) we depict our DQT results for CðtÞ for
βJ∥ ¼ 0.5;…; 1.5. While Cð0Þ decreases as β is
increased, the relaxation time shows the tendency to
increase with β. However, significant finite-size effects
appear as nondecaying Drude weights. Since these Drude
weights exceed 20% of Cð0Þ at βJ∥ ∼ 1.5, we restrict
ourselves to βJ∥ ≤ 1. For such β, once again, FTLM
agrees with the Fourier transform of our DQT data, which
also shows a N-independent dc limit for large N ∼ 30; see
Fig. 5(b). Finally, in the inset of Fig. 5(a) we show the T

dependence of the conductivity κ. Remarkably, in the T
range accessible to our methods, we observe no signifi-
cant deviations from the high-T behavior κ ∝ β2. While
these T are low from a numerical point of view, they are
still too high for a comparison to experiments on yet
available materials, where the exchange coupling constant
is large.
Conclusion.—We studied the heat conductivity κ of the

Heisenberg spin-1=2 ladder at finite temperature and over
the entire range of the rung interaction J⊥, using several
methods within linear response. We detailed the power-
law scalings κ ∝ J−2⊥ and κ ∝ J2⊥ at weak and strong J⊥,
respectively. We found a broad minimum of κ in the
region J⊥ ∼ 1, with a scaling of its temperature depend-
ence as κ ∝ T−2 down to T on the order of the exchange
coupling. Thus, we provided a comprehensive picture
of κðJ⊥; TÞ.
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FIG. 4. (a) Scaling of the conductivity κ with J⊥, obtained from
DQT and finite-t data t ≤ 5τ for βJ∥ → 0 and N ≤ 32 (closed
symbols). Results for the simplified operator j0 ¼ j∥ are also
depicted at J⊥=J∥ ∼ 1 (open symbols). Additionally, power laws
0.097ðJ⊥=J∥Þ−2 and 0.21ðJ⊥=J∥Þ2 are shown (lines). (b) PT for
the scattering rate γ, carried out using DQT. The PTof Ref. [59] is
also depicted (bullet).

FIG. 5. (a) The t dependence of C for βJ∥ ¼ 0.5;…; 1.5,
obtained from DQT for J⊥=J∥ ¼ 1 and N ¼ 28. (b) Spectrum
for βJ∥ ¼ 1, obtained by Fourier transforming finite-t data t ≤
5τ ∼ 12=J∥ for N ≤ 32. Additionally, a spectrum from N ¼ 22
FTLM is depicted (curve). Inset: T dependence of the conduc-
tivity κ, calculated by N ¼ 32 DQT (closed symbols, curve) and
N ¼ 22 FTLM (open symbols).
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