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Valley degrees of freedom offer a potential resource for quantum information processing if they can be
effectively controlled. We discuss an optical approach to this problem in which intense light breaks
electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then
differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly
polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is
determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a
simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and
demonstrate its robustness against moderate disorder and small deviations in optical parameters.
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Introduction.—Since the advent of graphene as a two-
dimensional electronic material which can be produced in
the laboratory [1,2], the possibility of exploiting the valley
degree of freedom within it [3] and other Dirac systems
has been vigorously studied. An important component of
such valleytronic systems is the transport and detection of
valley currents. Many of the ideas proposed to do so involve
controlling the structure of the system, either using specific
edge structures [3] or bulk nanostructures [4,5]. These
ideas are limited by the precision they require to control
the nanostructure. A particularly interesting way around
these limitations combines intrinsic band properties with
optics to yield valley-contrasting behavior. In gapped Dirac
systems such as MoS2 and WS2, or bilayer graphene in a
perpendicular electric field, valley currents can be induced
using the differing Berry curvatures of the valleys [6–11]. In
such systems, circularly polarized light can excite different
electron-hole pair populations in different valleys [12–14],
leading to a “valley Hall effect” [8,9,15–17].
In this work we discuss a fundamentally different

approach to optically controlled valleytronics in the bulk
that offers a high degree of tunability in a single sample.
In this approach, the light is relatively intense, so that the
electronic structure is represented by eigenvalues of a
Floquet Hamiltonian. The time dependence of the electric
field, rather than intrinsic properties of the material or
nanoscale structures, is used to effectively break inversion
symmetry and distinguish the valleys. One way to do this,
for example in graphene, is by shining an admixture of cir-
cularly polarized light of frequencies Ω and 4Ω, which can
be coherently generated by the use of nonlinear crystals.
As explained below, for appropriate choices of amplitudes
and phase offset one can produce a Floquet quasienergy
spectrum which is gapped for one valley but gapless for the
other. A dc current passed between leads with chemical
potentials in this gap is then valley polarized. The degree of
polarization can be interrogated with different phase-offsets

in the vicinities of each lead, such that the gap closing is in
the same or different valleys for each. An example of this
behavior for an idealized system is illustrated in Fig. 1. The
polarization turns out to be quite robust against disorder
and edge effects, as shown below. This system represents
an optically controlled valley valve.
This physics can also be applied to systems in which

inversion symmetry is already broken, such as graphene on
a BN substrate [9] or dichalcogenide materials like MoS2
and WS2, which have preexisting gaps that are the same for
both valleys. Circularly polarized light may close one gap
while opening the other in such materials, again allowing
marked preferential conduction for one of the two valleys.
Left- and right-circularly polarized light create open chan-
nels for opposite valleys, leading to optically controlled
valley polarization, as we demonstrate below.
Optically broken inversion symmetry in graphene.—In

the presence of a temporally periodic potential, electronic
states follow the time-dependent Schrödinger equation.
Floquet’s theorem [18] guarantees that its solutions
as a function of time t have the form ψαðtÞ¼
uαðtÞe−iεαt, with uαðtþTÞ¼ uαðtÞ, where T is the period
of the Hamiltonian HðtÞ, and α includes any quantum
numbers required to specify the electronic state. The
quasienergies εα (which may be restricted to the interval
−Ω=2 < εα ≤ Ω=2) are eigenvalues of the “Floquet
Hamiltonian” HFðtÞ¼HðtÞ− i∂t, and uα are the corre-
sponding eigenfunctions.
As a paradigm of these systems we consider the case of

graphene, in which the electrons are assumed to hop around
on a tight-binding honeycomb lattice [2,19,20], and the
effects of the circularly polarized light are implemented
via time-dependent phases in the hopping matrix elements
[21]. Variations in the intensity and the frequency of the
light tune the quasienergy band structure through many
distinct topological phases [22]. The energy spectrum
includes two valleys of states near the Kþ and K− points
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of the Brillouin zone, and wave functions are two-
component spinors representing the electron amplitudes
on the two sublattices of the honeycomb structure. In the
presence of a spatially uniform, time-dependent electric
field from light normally incident on the graphene plane,
the Floquet Hamiltonian in the sublattice basis ðuA; uBÞ has
the form [22]

HFðk; tÞ ¼
� −i∂t −γZðk; tÞ
−γZ�ðk; tÞ −i∂t

�
; ð1Þ

where k is the wave vector of the state, γ is a hopping
amplitude, Zðk; tÞ ¼ P

3
n¼1 e

i½kþðe=cÞAðtÞ�·an , an are the
nearest neighbor vectors of a site on the lattice, and AðtÞ ¼
A1ðcosΩt; sinΩtÞ is the vector potential for the electric
field, with Ω ¼ 2π=T. When k is set to the K� point
[K� ¼ ð0;�4π=3

ffiffiffi
3

p
a0Þ, with a0 the nearest neighbor

distance] the lattice symmetry combines with the temporal
symmetry so that ZðK�; tþT=3Þ¼ e∓2πi=3ZðK�; tÞ, effec-
tively tripling the relevant frequency for the Floquet

problem. Because of this, distinct states can cross, rather
than repel, at the Floquet zone boundary εα ¼ �Ω=2 as A1

or Ω are varied, leading to topological transitions in the
quasienergy band structure.
In this situation such crossings occur at the K� points

simultaneously. This results from a combination of inver-
sion symmetry (K− ¼ −Kþ) and a form of time reversal
symmetry: If uðKþ; tÞ is an eigenvector ofHFðKþ; tÞ, then
σxu�ðKþ;−tÞ, with σx a Pauli matrix, is an eigenvector of
HFðK−; tÞ with the same eigenvalue. Lifting this coinci-
dence of eigenvalues distinguishes the valleys. One way to
do this is by changing HF such that

ZðKþ;−tÞ ≠ ZðK−; tÞ; ð2Þ

while retaining the T=3 period of e�iΩtZðK�; tÞ needed for
a gap closing, breaking the effective inversion symmetry.
In contrast to approaches which use static potentials [4,5],
here we seek to use the vector potential to do so, allowing
for optical control of the valley-distinguishing properties
of the system.
One way this can be done is by adding a fourth harmonic

to the vector potential, so that it has the form Ax þ iAy ¼
A1eiΩt þ A4eið4ΩtþϕÞ. For this A the inequality [Eq. (2)] is
satisfied, provided ϕ ≠ 0, π, while the frequency tripling of
e�iΩtZðK�; tÞ is retained. As illustrated in Fig. 2, gaps at
K� are in general unequal and can be opened and closed
around ε ¼ Ω=2 separately by tuning the optical parame-
ters. Note that the phase offset ϕ may be adjusted by
varying the optical path length of the 4Ω light component
relative to the Ω component. As we next show numerically,
this leads to different band gaps for the two valleys, even
allowing the gap to close for one while the other remains
open. Thus, the admixture of the two frequencies of light
in principle allows one to prohibit a bulk current for one
valley while allowing it for the other.
Numerical results.—To test this idea, we have computed

the dc conductance at zero temperature for an irradiated
graphene strip [22,23]. Armchair graphene ribbons were
simulated, with periodic boundary conditions across the
width to minimize the edge effects while keeping the size of
the system small enough for numerical efficiency. Optical
parameters were chosen to produce quasienergy gaps large
enough to observe the effect with our simulated system
sizes. More realistic optical parameters are discussed
below. We also performed simulations for more realistic
systems with open boundary conditions. These results are
reported below and support our conclusions [24].
The current is introduced from the leads attached to the

two ends of the system, while the central graphene region
is voltage-biased to align the Floquet zone edge with the
average chemical potential of the leads. In this scheme, the
entire system is illuminated by light of frequency Ω. Each
half of the system around the leads is further illuminated
by circularly polarized light of frequency 4Ω with

(a)

(b)

FIG. 1. (a) The schematics of the graphene system: A back-
ground laser with frequency Ω and intensity ðc=4πÞA2

1Ω2 is
supplemented with a circularly polarized fourth harmonic of
frequency 4Ω and intensity ð4c=πÞA2

4Ω2 with a relative phase
offset ϕL on the left and ϕR right half of the device. (b) The valley
polarizationP0 ¼ 1 − σoff=σon in a ribbon with periodic boundary
conditions vs lengthL (in units of the lattice constanta0). The inset
shows the on and off conductances,σoff andσon, respectively.Here,
eA1a0=c ¼ 1.0, A4=A1 ¼ 0.1, Ω=γ ≈ 1.47, where γ ≈ 2.7 eV is
the hopping parameter, and the ribbon width w ¼ 6

ffiffiffi
3

p
a0.

PRL 116, 016802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

016802-2



independently controlled values of the phase offset, ϕL
and ϕR. With ϕL ¼ ϕR, due to the gap for one valley, the
system essentially allows only current from the other
valley to pass, yielding a valley-polarized current. That
this current is valley polarized is confirmed by comparing
with the conductance when ϕL − ϕR ¼ ð2nþ 1Þπ, with
n an integer. In this case, the two halves are conductive
for opposite valleys so very little net current passes. This
means the system behaves as a valley valve [3] which may
be opened or closed optically. The relative conductance in
these two cases (σon and σoff , respectively) offer a measure
of the valley polarization, P0 ≡ 1 − σoff=σon, achieved in
the system. The fidelity of the resulting valve can exceed
P0 ¼ 98%, as illustrated in Fig. 1(b) [24]. This is one of
our main results.
Effects of edges.—The valley polarization in our pro-

posal results from bulk transport. Because of the existence
of multiple Floquet topological phase transitions tuned by
frequency [22], the system with open boundary conditions
has, in addition, a number of chiral edge states. These edge
states can carry current but lack a well-defined valley index.
Moreover, they can scatter the bulk states between valleys.
Both of these effects can degrade the observed valley

polarization, and are particularly noticeable in small sys-
tems. We expect that in a sufficiently large sample the
degrading effects of the edges will be much reduced.
To support this expectation, we also simulated a more

realistic system with open boundary conditions. To min-
imize edge effects, we employ a geometry in which the
leads are connected away from them, as illustrated in
Fig. 1(a). This requires relatively large widths, limiting
the system lengths one can ultimately study efficiently.
Nevertheless, one may still obtain information about the
large-length limit by choosing a quasienergy gap that is not
too small. We report our results in Fig. 3 and compare them
to the case with periodic boundary conditions. The path
followed in Fig. 3(a) is chosen so that the gap for one of the
valleys vanishes precisely, maximizing the “on” current and
thereby the valley polarization. The system with periodic
boundary conditions and a gapless Kþ point shows nearly
100% valley polarization for an arbitrary value of the
quasienergy gap δ− > 0 at K−. For the system with open
boundary conditions, a larger gap δ− is required to have
significant valley polarization. Even so, remarkably large
valley polarizations are obtained in this case for a relatively
small system [24].
Dirac systems with statically broken inversion

symmetry.—A second way to break the symmetry of the
valley electronic states and realize an optically controlled
valleytronic system is by statically lifting the inversion
symmetry of the system. Examples of such systems are
provided by graphene deposited on boron nitride [28,29]
and single-layer MoS2 [8,30]. A simple description of these

FIG. 3. The valley polarization P0 for the system with periodic
(dotted blue line) and open (solid green line) boundary con-
ditions, respectively. The index i indicates parameter values at
points along the δþ ¼ 0 (orange) contour shown in the inset, as
in Fig. 2(c). The corresponding gap δ− is also shown (dashed
black line). The fixed parameters are as in Fig. 2(a); the
chemical potential of the irradiated region is 0.71γ ≈ Ω=2; the
periodic system has a full length L ¼ 2l ¼ 288a0 and width
w ¼ 6

ffiffiffi
3

p
a0; the open system has l ¼ 27a0, w ¼ 24

ffiffiffi
3

p
a0; the

leads have a width 12
ffiffiffi
3

p
a0 and are connected equidistant from

the edges across the width and a distance 9a0 away from the
center.

(a)

(b) (c)

FIG. 2. (a) The bulk quasienergy spectrum in the Brillouin-
Floquet zone for uniformly irradiated graphene (eA1a0=c ¼ 1.5,
A4=A1 ¼ 0.6, ϕ ¼ π=2, Ω=γ ¼ 1.44) shows a gap at K− and
gapless Dirac dispersion atKþ point. (b) and (c) The quasienergy
gaps Ωδ� of the Kþ (blue) and K− (orange) valleys at ε ¼ Ω=2
show the gaps may be opened and closed by tuning the optical
parameters. In (b) α1 ≡ eA1a0=c ¼ 1.5, Ω=γ ¼ 1 and in
(c) ϕ ¼ 0, Ω=γ ¼ 1.44.

PRL 116, 016802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

016802-3



systems is a tight-binding model on a honeycomb lattice
with a staggered potential �μs of opposite signs on
different sublattices; the low energy electron states at the
K� points are thengovernedbymassiveDiracHamiltonians.
Despite this apparent inversion symmetry breaking, the
magnitude of the gap in both valleys is the same and no
valley polarization can be realized in equilibrium. Valley
polarization in a static region can be achieved in this system
via optical absorption [13,31].
In our approach, the gaps at the K� points can be

distinguished by the helicity of the monochromatic circu-
larly polarized light. The Floquet Hamiltonian for the
low-energy excitations now takes the form HFðk; tÞ þM,
where HF is the same as in Eq. (1), and

M ¼
�
μs 0

0 −μs

�
: ð3Þ

Because of the inversion-symmetry breaking, the quasiener-
gies around the two valleys now evolve differently: for a
given helicity, the frequency can be tuned to a value such
that there is a gapless Kþ valley crossing ε ¼ 0, and a
gapped K− valley [24]. Illuminating the two halves of the
system with circularly polarized lasers at such a frequency
realizes a valley valve. The valve can be turned on and off
by switching the helicity of one of the lasers. We have
checked that, in this case, the current induced from the leads
at energy E ≈ 0 has a valley polarization exceeding 90%.
Discussion.—To observe the effects we have demon-

strated above, energy and length scales in real samples must
be chosen appropriately. For example, the temperature in
the leads must be less than the quasienergy gap of the
gapped valley, namely, Ωδ−. This can be tuned optically.
For example, at the main frequency Ω ¼ 0.2γ ¼ 0.54 eV, a
gapless Kþ is obtained at α1 ¼ eA1a0=c ¼ 0.1 and laser
intensity I1 ¼ ð1=4πcÞA2

1Ω2 ∼ 1014 W=m2. At these values,
by varying the ratio A4=A1, the gap atK− can be tuned to be
> 5 meV. Increasing the frequency and the intensity of the
laser can produce even larger gaps [24]. Since the conduct-
ance of the gapped valley decays over the wave function
evanescent length, lev ∝ v=Ωδ−, the length of the system L
must exceed lev. Here, v is the Fermi velocity at the valley,
which can also be tuned optically. In our estimate, for the
aforementioned values, lev < 500a0 ¼ 71 nm.
In practice, there are always extrinsic perturbations

limiting the polarization. Prominent among these is dis-
order, which does so through intervalley scattering.
Intuitively, the effect of disorder is to fill in the gap in
the quasienergy spectrum. We expect that its effect is
controlled by this gap, and that it should not spoil the valley
polarization when weak enough. In Fig. 4 we show results
of our simulations of disorder-averaged polarizations in the
graphene system discussed above [24]. In these simulations
we have used random, static on site potentials, with
Gaussian distribution of zero mean and standard deviation

W characterizing the disorder strength. The conductances
are each averaged over 25 disorder configurations. Indeed,
at larger strengths, disorder causes intervalley scattering
and diminishes the valley polarization by increasing σoff
(see inset). However, when W is sufficiently smaller than
the quasienergy gap, here Ωδ− ≈ 0.1γ, the valley polariza-
tion we obtain is robust against disorder, exceeding 70%
over a significant range of disorder strength. As discussed
above, in real samples the quasienergy gap can be tuned to
be > 5 meV. Samples with disorder strengths below this
appear to be currently available in the lab [32–35]. Thus we
believe there is considerable room to vary the parameters of
the system without having the effects spoiled by disorder.
Novel forms of electronic states arise as the result of the

interaction between electrons and periodic external driving
fields. The optically controlled valley polarization and
valleytronic devices proposed in this work promise new
ways of engineering and utilizing the emergent electronic
degrees of freedom in graphene and related Dirac systems.
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