
Solution of the Dynamics of Liquids in the Large-Dimensional Limit

Thibaud Maimbourg,1 Jorge Kurchan,2 and Francesco Zamponi1
1LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, Paris 75005, France
2LPS, École Normale Supérieure, UMR 8550 CNRS, 24 Rue Lhomond, Paris 75005, France

(Received 16 July 2015; published 7 January 2016)

We obtain analytic expressions for the time correlation functions of a liquid of spherical particles, exact
in the limit of high dimensions d. The derivation is long but straightforward: a dynamic virial expansion for
which only the first two terms survive, followed by a change to generalized spherical coordinates in the
dynamic variables leading to saddle-point evaluation of integrals for large d. The problem is, thus, mapped
onto a one-dimensional diffusion in a perturbed harmonic potential with colored noise. At high density, an
ergodicity-breaking glass transition is found. In this regime, our results agree with thermodynamics,
consistently with the general random first order transition scenario. The glass transition density is higher
than the best known lower bound for hard sphere packings in large d. Because our calculation is, if not
rigorous, elementary, an improvement in the bound for sphere packings in large dimensions is at hand.

DOI: 10.1103/PhysRevLett.116.015902

Introduction.—The physics of liquids and glasses
belongs to the group of fields that are victims of the lack
of a small parameter. Many approximations have been
proposed over the years, but they suffer from the uncer-
tainty about what is the limit in which they are supposed to
become exact. This has been true both for equilibrium and
for dynamic properties. From the point of view of dynam-
ics, an extreme case is that of mode-coupling theory (MCT)
[1–3]: it may be introduced by an (uncontrolled) resum-
mation of an infinite subset of diagrams. The mode-
coupling approximation yields mode-coupling dynamics:
the phenomenology depends on the approximation itself
[4], somewhat like a harmonic approximation is expected to
predict oscillations.
An often used remedy for the absence of control

parameters [5] is to promote the system to d dimensions,
solve the large d limit, and (eventually) expand around.
This strategy has been used with success for liquids [6–8],
strongly coupled electrons [9], atomic physics [10], gauge
field theory [11], and, most recently, the thermodynamics
of amorphous systems [12,13]. In this Letter, we extend this
procedure to the dynamics of liquids made of spherical
particles. We restrict ourselves to equilibrium, although the
extension to the glassy off-equilibrium “aging” regime is at
hand. It has been a long-standing question whether MCT
becomes exact in infinite dimensions [4,14–18], and the
present computation gives an answer.
Statement of the main result.—Weshall consider a system

of N identical particles, interacting via a spherical potential
VðrÞ of typical interaction length σ in d dimensions, and
obtain a solution for the equilibrium time correlations of the
resulting liquid that becomes exact in the limit d → ∞. We
need to confine the particles in a finite volume V. It is very
convenient to do this in such a way that the “box” does not
break rotational and translational invariances, which are

crucial in our developments. A practical way to do this is to
consider particles living on points xi (i ¼ 1;…; N) on the
d-dimensional surface of a hypersphere with xi · xi ¼P

μ½xμi �2 ¼ R2 ≡ σ2Δliq=ð2dÞ ≫ σ2 (μ ¼ 1;…; dþ 1Þ.
The thermodynamic limit R → ∞ with constant density
ρ ¼ N=V, in which the flat space is recovered, will be taken
befored → ∞. Rotations and translations ind dimensions—
with dimensions dðd − 1Þ=2 and d, respectively—are
encoded in the rotations in dþ 1 dimensions, with dimen-
sion dðdþ 1Þ=2. We consider a Langevin dynamics

mẍiðtÞ þ γ _xiðtÞ ¼ −νiðtÞxiðtÞ −∇xiH þ ξiðtÞ; ð1Þ

where ξi is a white noise with hξμi ðtÞξμ
0

j ðt0Þi ¼
2Tγδijδμμ0δðt − t0Þ, H ¼ P

i<jVðxi − xjÞ, and T ¼ 1=β is
the temperature. Here, and in what follows, h•i denotes
average over noise ξi and/or initial conditions. The νi are
Lagrange multipliers, imposing the spherical constraints
xi · _xi ¼ 0. For d → ∞, they do not fluctuate and their value
νi ∼ ν ¼ dTp=R2 is proportional to the equilibrium reduced
pressure p ¼ βP=ρ [19]. We shall, in what follows, treat the
overdamped case m ¼ 0, but the inertial term may be
reinstalled at any stage (and in that case, the thermal bath
may be disconnected setting γ ¼ 0, to recover a purely
Newtonian dynamics).
We define the adimensional scaled correlation and

response functions (see Fig. 1 in [20])

Cðt; t0Þ ∼ Ciðt; t0Þ ¼
2d
σ2

xiðtÞ · xiðt0Þ;

Rðt; t0Þ ∼ Riðt; t0Þ ¼
2d
σ2

X
μ

δxμi ðtÞ
δhμi ðt0Þ

;

Δðt; t0Þ ∼ d
σ2

jxiðtÞ − xiðt0Þj2 ¼ Δliq − Cðt; t0Þ; ð2Þ
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where hi is an external field conjugated to xi, and we have
also introduced the single particle mean square displace-
ment Δ [19]. As we shall see, these quantities have a finite
and nonfluctuating limit for d → ∞. In the following, and
in [20], we shall derive exact equations for the correlations
(2). For simplicity, we will restrict to equilibrium where
Cðt; t0Þ ¼ Cðt − t0Þ, and RðtÞ ¼ −βθðtÞ _CðtÞ; here, θðtÞ is
the Heaviside step function.
Let us define a scaled density φ̂ ¼ ρVdðσÞ=d where

VdðσÞ is the volume of a d-dimensional sphere of radius σ,
a scaled γ̂ ¼ σ2γ=ð2d2Þ, a scaled potential V̄ðyÞ¼
V½σð1þy=dÞ�, and the interparticle force FðyÞ ¼ −V̄ 0ðyÞ.
The averages are obtained from a dynamics with a colored
noise ζ

γ̂ _yðtÞ ¼ −w0½yðtÞ� − β

Z
t

0

duMðt − uÞ_yðuÞ þ ζðtÞ;

hζðtÞζðt0Þi ¼ 2γ̂Tδðt − t0Þ þMðt − t0Þ; ð3Þ
whose memory kernel satisfies

Mðt − t0Þ ¼ φ̂

2

Z
dy0e−βwðy0ÞhFðtÞFðt0ÞiM;y0 : ð4Þ

The average in (4) is over the process (3) with
yðt ¼ 0Þ ¼ y0. The total effective potential has the form
(see Fig. 4 in [20])

wðy0Þ ¼ V̄ðy0Þ − Ty0 þ
Ty20
2Δliq

: ð5Þ

The quadratic part of the potential plays the role of the
confining “box.” In fact, it is negligible for finite times and
large Δliq, and the probability distribution is exponential in
y near y ∼ 0 (expressing the growth of entropy as a function
of distance along the (dþ 1)-dimensional sphere), the
region relevant for those times. Reassuringly, box details
are irrelevant at short times.
Once M is determined by solving Eqs. (3) and (4), one

can obtain the correlations from

γ̂ _CðtÞ ¼ −
T
Δliq

CðtÞ − β

Z
t

0

duMðt − uÞ _CðuÞ;

γ̂ _ΔðtÞ ¼ T − β

Z
t

0

duMðt − uÞ _ΔðuÞ; ð6Þ

the second relation being valid for Δ ≪ Δliq.
Finally, Eq. (4) has amicroscopic counterpart [20]; in fact,

the functionMðtÞ is, in the large d limit, the autocorrelation
of the interparticle forces FijðtÞ ¼ −∇V½xiðtÞ − xjðtÞ�

MðtÞ ∝ 1

N

X
i≠j

hFijðtÞ · Fijð0Þi; ð7Þ

a result that provides a physical interpretation of MðtÞ.

Relation with MCT.—If M were a simple function of C,
M ¼ FðCÞ, then Eq. (6) would be in the schematic MCT
form. As is well known, schematic MCT is obtained as the
exact dynamics of a system of spherical spins

P
is

2
i ¼ N

with p-spin random interactions [25–27], for which

M ¼ FðCÞ ¼ p
2
Cp−1: ð8Þ

However, as soon as one considers nonspherical variables,
e.g., soft spins with a potential VðsÞ ¼ aðs2 − 1Þ2, one
obtains an equation like (3) with this VðsÞ [26,28,29]

_sðtÞ ¼ −V 0ðsÞ − β

Z
t

0

duMðt − uÞ_sðuÞ þ ζðtÞ: ð9Þ

Here again, Eq. (8) holds, and the system is closed by
Cðt − t0Þ ¼ hsðtÞsðt0Þi. Within the liquid phase, this more
general form of dynamic equation has essentially the same
phenomenology as schematic MCT. Our system of equa-
tions belongs to this more general class, and thus, they
show exactly the same MCT phenomenology for what
concerns universal quantities that are independent of details
of the memory kernel (e.g., the dynamical scaling forms
and the relations between critical exponents) [3,30,31].
However, important quantitative differences are

observed with respect to applying the MCT approximation
to the intermediate scattering functions, which leads to the
“standard” formulation of MCT for liquids [1,2]. Standard
MCT has the same qualitative structure as schematic MCT
but also provides quantitative results for the self and
collective scattering functions in all dimensions, in par-
ticular in d ¼ 3 [32,33]; its d → ∞ limit was discussed in
Refs. [15,16]. Our result in d → ∞ is formulated in terms
of Δðt; t0Þ, and most of the other natural observables are
functionals of Δðt; t0Þ. For example, for qσ=d3=2 ≪ 1, we
have for the self intermediate scattering function [20]:

ϕs
qðt; t0Þ ¼ exp

�
−
q2σ2

2d2
Δðt; t0Þ

�
; ð10Þ

in contrast to the non-Gaussianity in q one finds within
MCT close to the plateau [15,16]. One could then write our
equations in terms of ϕs

q. The result, however, is different
from standard MCT, and in particular, our kernel M is not
an analytic function of ϕs

q.
Because our equations fall in the same universality class

as schematic MCT but provide different quantitative results
with respect to standardMCT in d → ∞, it remains a matter
of taste whether one wishes to call them with the same
name or, more generally, “dynamic random first order
transition (RFOT)” [14].
Sketch of the derivation.—Let us outline the main steps

in the derivation; more details are given in [20]. In order to
construct the high-dimensional limit, a virial expansion is a
reliable method. Following [34], we exploit the well-known
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analogy between trajectories and polymers. The dynamics
are generated by a sum of trajectories in d-dimensional
space, in our case, the surface of a (dþ 1)-dimensional
sphere. To each trajectory is associated an Onsager-
Machlup probability weight which is the exponential of
an action. The sum over all trajectories of this quantity is
analogous to a partition function and is, thus, used to
generate averages over the Langevin process (1). The
action is expressed in terms of trajectories of the xi and
auxiliary “response” variables x̂i (Martin–Siggia–Rose–De
Dominicis–Janssen generating path integral) [25,27]. The
result reads, in the Itô convention

ZN ¼
Z YN

i¼1

DxiDx̂ie
−
P

N
i¼1

Φ½xi;x̂i�−
P

1;N
i<j

W½xi−xj;x̂i−x̂j�;

Φ½x; x̂� ¼ γ

Z
dtðTx̂2 þ i_x · x̂þ νx̂ · xÞ;

W½x1 − x2; x̂1 − x̂2� ¼ i
Z

dtðx̂1 − x̂2Þ ·∇Vðjx1 − x2jÞ:

ð11Þ
Following standard liquid theory [19,34], we introduce the
density function for trajectories

ρ½x; x̂�≡
�
1

N

XN
i¼1

δ½x − xi�δ½x̂ − x̂i�
�
; ð12Þ

where δ½x� is the functional Dirac δ (a product of deltas over
all times), and we construct a virial (Mayer) expansion as a
power series in ρ½x; x̂�. One can show that all terms
involving a product of more than two density fields are
subleading for d → ∞ [8]: they are exponentially sup-
pressed because of the requirement that the three trajecto-
ries overlap (see Fig. 1 in [20]), which is exponentially
unlikely in large d. Truncating the virial expansion accord-
ingly, we get [20]

S ≡ lnZN

N
¼ −

Z
Dρ½x; x̂�ðΦ½x; x̂� þ ln ρ½x; x̂�Þ

þ N
2

Z
Dρ½x1; x̂1�Dρ½x2; x̂2�f½x1 − x2; x̂1 − x̂2�; ð13Þ

where Dρ½x; x̂� ¼ D½x; x̂�ρ½x; x̂� and f½x1 − x2; x̂1 − x̂2� ¼
e−W½x1−x2;x̂1−x̂2� − 1. The physical ρ½x; x̂� is determined by
δS=δρ½x; x̂� ¼ 0 and the normalization

R
Dρ½x; x̂� ¼ 1. The

first term in Eq. (13) is an ideal gas contribution and the
second accounts for interactions.
Following the thermodynamic treatment [35], we may

now argue that due to rotational invariance on the hyper-
sphere, ρ½xðtÞ; x̂ðtÞ� ¼ ρ½Cðt; t0Þ; Rðt; t0Þ; Dðt; t0Þ� where
Rðt;t0Þ≡ð2d=σ2ÞxðtÞ·x̂ðt0Þ and Dðt;t0Þ≡ð2d=σ2Þx̂ðtÞ·x̂ðt0Þ.
Thus, we can make a change of variables in the functional
integration over xðtÞ; x̂ðtÞ to Qðt; t0Þ≡ fCðt; t0Þ; Rðt; t0Þ;
Dðt; t0Þg. The change of variables gives for density
averages [20]

Z
D½x; x̂� • ρ →

Z
DQ • edstr lnQ−dΩðQÞ; ð14Þ

where edstr lnQ is the Jacobian of the transformation [20], and
we defined ρðQÞ ¼ e−dΩðQÞ. The appearance of the dimen-
sion in the exponent leads to a narrowing of fluctuations of
correlations, and saddle-point evaluation becomes exact
[20]. In this way, we can compute the ideal gas term in
Eq. (13). For the interaction term, that involves two ρ
functions, we need the variables corresponding to ðx1; x̂1Þ,
ðx2; x̂2Þ and also ω ¼ jx1 − x2j2, ω̂ ¼ ðx1 − x2Þ · ðx̂1 − x̂2Þ.
The Jacobianmay be calculatedwith the samemethods [20],
and the crucial result is that, at the saddle-point level,Q1 ¼
Q2 ¼ Q with Q determined by the same saddle-point as in
Eq. (14), while the remaining integration over ωðtÞ; ω̂ðtÞ is
effectively one dimensional. Changing variables with
ωðtÞ ¼ σ2½1þ yðtÞ=d� leads to a finite integration over
yðtÞ that eventually gives Eq. (3). Hence, the typical distance
between two trajectories turns out to be σ þOð1=dÞ. This
scaling physically tells us that a particle vibrates inside a
cage with 1=d amplitude and interacts with OðdÞ neigh-
bours. Finally, equilibrium and causality at the saddle-point
level imply Dðt; t0Þ ¼ 0, and the fluctuation-dissipation
relation Rðt − t0Þ ¼ βθðt − t0Þ∂t0Cðt − t0Þ. The fact that
saddle-point evaluation is made for the two-time variables
is themathematical justification of the factmentioned above,
that C;R;D do not fluctuate. The saddle-point equation for
Q gives Eqs. (4) and (6) [20].
In this Letter, we are treating an equilibrium situation.

Within the liquid phase, this may be achieved by starting
from any configuration in the distant past. A more practical
way, however, is to assume equilibrium at a convenient
time t0 (e.g., t0 ¼ 0). How does one deal with a non-
Markovian equation of motion like (3)? The answer is
simple: either one makes the memory kernel extend to the
remote past, or, alternatively, one may assume equilibrium
at t0, in other words, summing all the past histories passing
through yðt0Þ at t0. It turns out [36] that this is implemented
simply by cutting the memory at a lower limit t0, as in
Eq. (3) [20]. This completes the derivation of our basic
dynamical equations.
Dynamic transition and time scale separation.—We now

apply the standard MCT methodology to locate the density
or temperature at which a dynamic transition occurs with
freezing in a cage, corresponding to the development of a
plateau in ΔðtÞ [1–3,27].
Consider the case when MðtÞ falls from Mð0Þ to a

plateau value MEA, and then, at much larger times, to zero.
Concomitantly,ΔðtÞ grows to a plateau valueΔEA, and then
continues to grow at a slower (diffusive) pace. Denote the
fast part δMðtÞ ¼ MðtÞ −MEA. In the limit in which the
plateau times are much larger than the microscopic times,
and much smaller than the final relaxation times, the noise
breaks into a fast variable δζðtÞ and a slow random variable
ζ̄, as does the friction term. Their sum acts as an
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adiabatically slow field YðtÞ at those times. We may, thus,
split the equilibration in two steps [37]: PðyjYÞ and
PslowðYÞ. When t − t0 is in the plateau region, we may
write the expectations

hAðtÞBðt0Þi ¼
Z

dYPslowðYÞhAiYhBiY; ð15Þ

where h•iY ¼ R
dY • PðyjYÞ, PeqðyÞ ∝ e−βw0ðyÞ, and

PðyjYÞ ¼ PeqðyÞe−ðβ
2MEA=2Þðy− T

MEA
YÞ2

R
dy0Peqðy0Þe−ðβ

2MEA=2Þðy0− T
MEA

YÞ2 ;

PslowðYÞ ¼
R
dyPeqðyÞe−ðβ

2MEA=2Þðy− T
MEA

YÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πMEA

p : ð16Þ

Obviously, PeqðyÞ ¼
R
dYPðyjYÞPslowðYÞ. We, therefore,

obtain the self-consistent equation for MEA

MEA ¼ φ̂

2

Z
dYPslowðYÞhFi2Y ≡MðMEAÞ: ð17Þ

From Eq. (6), we obtain

β2MEA ¼ 1

ΔEA
−

1

Δliq
∼

1

ΔEA
: ð18Þ

The dynamical transition point, at which the plateau
becomes infinite, happens when Eq. (17) first has a nonzero
solution for MEA ¼ T2=ΔEA. This point happens as a
bifurcation, and may be quickly obtained by solving
Eq. (17) together with M0ðMEAÞ ¼ 0 [20].
For hard spheres, the result is φ̂d ¼ 4.807. This result is

fully consistent with the one based on thermodynamics
[12], and, in fact, Eq. (17) is exactly identical to the one that
can be derived using the replica method [20] consistently
with the general RFOT scenario [14,38–43]. This is a
particular instance of a general correspondence between
thermodynamic and dynamic results that is verified by the
infinite-d solution, and can be extended to critical MCT
exponents [44] and to correlation functions [45–47]. In
fact, expanding around ΔEA [1–3], one can show that
ΔEA − ΔðtÞ ∼ t−a upon approaching the plateau, while
ΔðtÞ − ΔEA ∼ tb upon leaving the plateau. The exponents
a; b satisfy the famous relation [1–3,44]

Γð1 − aÞ2
Γð1 − 2aÞ ¼

Γð1þ bÞ2
Γð1þ 2bÞ ¼ λ: ð19Þ

For hard spheres, we obtain λ ¼ 0.707 which implies
a ¼ 0.324 and b ¼ 0.629 [48]. Finally, from Eq. (10),
one can show that the factorization property of MCT [1,2]
still holds in d → ∞, namely, that close to the plateau,
ϕs
qðtÞ − ϕs

q;EA ∼ −ðq2σ2=2d2Þϕs
q;EA½ΔðtÞ − ΔEA� factorizes

in a function of q and a function of t [20].
Diffusion, viscosity, Stokes-Einstein relation.—At long

times, in the liquid phase φ̂ < φ̂d, the motion is diffusive

and ΔðtÞ ∼ ð2d2D=σ2Þt, where D is the diffusion coeffi-
cient. Plugging this form in Eq. (6), and recalling thatMðtÞ
decays to zero over a finite time, we obtain an exact result
for D

2d2

σ2
D ¼ T

γ̂ þ β
R∞
0 dtMðtÞ : ð20Þ

At low densityMðtÞ ¼ 0, and we recover the bare diffusion
coefficient D ¼ T=γ. Upon increasing density, MðtÞ
increases and D decreases. For φ̂ → φ̂−

d , where a finite
plateau of MðtÞ emerges,

R
∞
0 dtMðtÞ diverges and the

diffusion coefficient vanishes as D ∼ ðφ̂d − φ̂Þγ with the
exponent γ ¼ 1=ð2aÞ þ 1=ð2bÞ ¼ 2.34, which is consis-
tent with the numerical results of [49].
Within linear response theory, the shear viscosity ηS of

the liquid is given by [19,50]

ηS ¼
β

V

Z
∞

0

dthσμνðtÞσμνð0Þi;

σμνðtÞ ¼
X
i<j

ðxμi − xμj Þ∇νVðxi − xjÞ; ð21Þ

where μ ≠ ν are two arbitrary components of the stress
tensor σμν. In [20], we show that hσμνðtÞσμνð0Þi ¼ dNMðtÞ,
and thus,

ηS ¼ βρd
Z

∞

0

dtMðtÞ: ð22Þ

This relation shows that, for φ̂→ φ̂−
d , ηS∼1=D∼ðφ̂d− φ̂Þ−γ ,

as it is found in MCT.
Combining Eqs. (20) and (22), we obtain a relation

similar to the Stokes-Einstein relation (SER)

D ¼ T
γ þ 2d

ρσ2
ηS

≈
Tρσ2

2d
1

ηS
; ð23Þ

where the second expression holds close to φ̂d. This
relation is interesting because it predicts that the SER is
not exactly satisfied in dense liquids: the quantity DηS=T,
which is constant in SER, has, instead, a small variation
proportional to ρ. This is in agreement with results of
Fig. 7(b) in [51] that show a linear variation of DηS with ρ
in the dense regime for large enough dimension.
Conclusions.—In this Letter, we obtained an exact sol-

ution of the dynamics of liquids in the limit of infinite spatial
dimension. The picture that emerges has a relevant “caging”
length scale that is smaller than the particle radius byOð1=dÞ
(it is about 1=5 for real colloids [52]). The physics of
diffusion stems from interactions at that small scale, while
all particle motion beyond that scale consists of uncorrelated
steps of displacement, and memory of what happens at
distances≫ 1=d is lost. Diffusion coefficients and viscosity
are, thus, decided at distances much smaller than the particle
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radius. This strongly suggests that the wave vectors q
that matter for this transition are not the ones associated
with the first neighbor distance 1=σ, but rather the much
larger ones ∼d=σ corresponding to the cage size. Note that,
at the transition, cages are correlated over large distances
[38,53–55]. Also, an expansion in the number of collisions
[7] seems difficult to reconcile with our results, because we
expect multiple collisions within a cage.
Is the high-dimensional dynamics related to MCT? The

answer is that the result is not the one obtained from the
usual procedure for building up a MCTequation, which, for
example, gives a different scaling of φ̂d with dimension
[15,16]. Instead, the system we obtain is formally quite
close to the slightly more general case of soft-spin mean-
field dynamics, Eq. (9), because we have mapped the
system into a one-dimensional dynamics in the presence of
a colored noise and friction, that have to be determined self-
consistently through Eqs. (3) and (4).
In the dense glassy regime, we obtain predictions for the

scaling of the cage radius, of the dynamical transition
density φ̂d, and of the parameter λ, that differ from the ones
of usual MCT [15,16,18]. Our results are fully consistent
with those obtained from the thermodynamic approach
[12,13,48], which proves the exactness of the RFOT
scenario [38–43] for statics and dynamics in d → ∞, as
conjectured in [14]. Our results are also in agreement with
numerical simulations of hard spheres in large spatial
dimension [49,51].
Interestingly, we find that an ergodic liquid phase of hard

spheres exists for densities φ̂ ≤ φ̂d ¼ 4.807. This implies
that hard sphere packings exist (at least) up to φ̂d, and they
can be constructed easily through a sufficiently slow
compression of the liquid [56,57]. Note that the value of
φ̂d is larger than the best known lower bound for the
existence of sphere packings, φ̂ ≥ 6=e [58], and that it took
20 years to improve the previous best lower bound φ̂ ≥ 2
[59] by a small factor 3=e. Our calculation is simple enough
that there is hope for transforming it into a rigorous proof,
along the lines of [60]. This would result in an improved
constructive lower bound for sphere packings.
Future extensions of this work include the investigation

of the effect of dissipation [61–64], the study of out-of-
equilibrium aging dynamics [65], and the study of non-
perturbative processes in 1=d through an instantonic
expansion. The thermodynamic partition function of quan-
tum systems is formally very similar to Eq. (11) and could
also be studied along these lines.
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