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In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call
choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through
a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of
symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance.
For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain
how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce
a quantity, called the “choreography” of a given configuration. We discuss the possibility that some
(naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic
order, and suggest natural experimental signatures that could be used to identify and characterize such
systems.
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Introduction: The four-satellite orbit.—Because they are
such natural and beautiful structures, lattices and crystals
appear throughout physics and mathematics, in many
different (and often unexpected) ways [1–4]. Here we
introduce the idea of a choreographic crystal, a type of
configuration that can be much more symmetrical than is
revealed by a snapshot of it at any given time. We study this
idea from several different angles and suggest experimental
diffraction signatures to identify and characterize such
choreographic systems in the lab, whether they are natu-
rally occurring or artificially engineered.
Let us start with a simple and beautiful example of a

choreographic lattice. We can find our way to this example
by comparing the following two elementary problems.
The first problem is static: what is the most symmetrical

arrangement of four points on the two-sphere? The solution
is well known: the four points are the four vertices of a
regular tetrahedron. We can express the positions of these
four points neatly in Cartesian coordinates as follows: we
start from the eight vertices of the cube f�1;�1;�1g and
select the four vertices with an even number of minus signs;
in other words, the positions ~qα of the four points (α ¼ 0, 1,
2, 3) have Cartesian components qjα (j ¼ 1, 2, 3) given by

qjα ¼ ð−1Þ1þδ0;αþδj;α ; ð1Þ

where δa;b is the Kronecker delta function.
The second problem is a natural dynamical analogue of

the first: let us now imagine that we let the points flow
along the geodesics of the sphere (i.e., the great circles),
with angular velocities that are constant in time and all have
equal magnitudes, like satellites in circular orbit around the
Sun—what is the most symmetrical configuration of four

such satellite trajectories? Once again, the answer may be
neatly summarized in Cartesian coordinates: we choose the
four satellites to have trajectories ~pαðtÞ with Cartesian
components pj

αðtÞ given by

pj
αðtÞ ¼ qjα cos

�
t −

2πj
3

�
; ð2Þ

where qjα is given by Eq. (1). This solution has the
following geometrical interpretation. Each of the four
satellites is orbiting in a different orbital plane: the αth
trajectory ~pαðtÞ is a circular orbit with its angular momen-
tum in the direction ~qα; in other words, there is one satellite
orbiting around each of the four threefold symmetry axes of
the regular tetrahedron. Furthermore, to achieve maximal
symmetry, the relative phases of the four orbits (or,
equivalently, the initial positions) have been carefully
chosen: for example, note that whenever the four satellites
degenerate into a common plane (which happens six times
per orbit, whenever tn ¼ nπ=12, for odd n), they always
form a perfect square containing the origin at its center.
Since the first problem is static, the corresponding

solution (1) has a static sort of symmetry: a group (the
full tetrahedral group) of 24 spatial rotations and reflections
that carry the configuration into itself. Since the second
problem is dynamical, the corresponding solution (2) has a
dynamic sort of symmetry. From a static standpoint, a
“still photograph” of (2) at some instant will, at most, be
symmetric under 16 rotations and reflections (namely, the
symmetry group D4h of the square prism, at the special
times tn described above), but, from a dynamic standpoint,
we can recall that the satellites’ four angular momenta
point along the four diagonals of the cube with vertices
f�1;�1;�1g, and note that any rotation or reflection that
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leaves this cube invariant (there are 48 in total) also leaves
the four-satellite orbit (2) invariant, when combined with
an appropriate overall translation and/or reflection in time.
In both solutions, (1) and (2), the four particles are
equivalent to one another, in the sense that any particle
may be mapped into any other by one or more of the
symmetries. While the symmetries of (1) are intuitively
clear, the symmetries of (2) are considerably more subtle—
yet, as we have seen, (2) is actually more symmetrical than
(1). Just as (1) represents one of the simplest examples of a
static lattice on the sphere, (2) represents one of the
simplest examples of a choreographic lattice on the sphere.
Solution (1) was known in ancient times, but, as far as we
can tell, (2) is new.
We believe that choreographic crystals share a beauty

and naturalness with ordinary crystals, and we hope that
they may be of similarly broad interest and importance.
Symmetric satellite swarms.—In the previous section, we

introduced choreographic crystals via an example based
on a symmetrical configuration of four satellite orbits.
In this section, we explain how to construct and classify
all symmetrical satellite configurations. (For earlier work
on symmetric satellite configurations, see Refs. [5,6].) In
addition to being intrinsically (and technologically) inter-
esting, this problem will set up our more general treatment
of choreographic crystals in the subsequent section.
Let us start by establishing some notation, terminology,

and conventions. In this section, we can imagine for
concreteness that each individual satellite moves on a
Keplerian (elliptical) orbit with unit period. The time
translation operator Uτ maps each orbit x ¼ xiðtÞ to the
orbit Uτx ¼ ðUτxÞiðtÞ ¼ xiðtþ τÞ (it shifts all of the
satellites forward along their orbits by a common phase),
the time reversal operator Tc maps each orbit x ¼ xiðtÞ to
the orbit Tcx ¼ ðTcxÞiðtÞ ¼ xiðc − tÞ (it reverses all veloc-
ities and angular velocities, so the satellites move backward
along their orbits), and an element g ¼ gij of the orthogonal
group Oð3Þ maps each orbit x ¼ xiðtÞ to the (rotated
and/or reflected) orbit gx¼ðgxÞiðtÞ¼ gijxjðtÞ. We can also
combine these operations: e.g., ðUτgxÞiðtÞ ¼ gijxjðtþ τÞ
or ðTcUτxÞiðtÞ ¼ ðU−τTcxÞiðtÞ ¼ xiðc − tþ τÞ. [To illus-
trate, consider two combinations: (i) a 1=n time delay
combined with a 2π=n rotation around the ẑ axis or (ii) zero
time delay combined with a reflection through the fx; yg
plane: either combination leaves a circular orbit in the
fx; yg plane invariant but acts nontrivially on an orbit
which is tipped out of the fx; yg plane.]
We refer to a set of satellite orbits as a “swarm” S. A

“symmetry” (or “symmetry operation” [7]) of the swarm S
is a combined transformation Uτg that leaves S invariant:
S ¼ fUτgxjx ∈ Sg, and a “*symmetry” of the swarm S is a
combined transformation TcUτg that leaves S invariant:
S ¼ fTcUτgxjx ∈ Sg. In other words, a *symmetry
involves time reversal, while a symmetry does not. [For
example, a swarm of circular orbits has a symmetry

consisting of a time shift by half a period combined with
spatial inversion through the origin (x → −x), and a single
elliptical orbit has two *symmetries: one which combines a
time reversal with a rotation around the periapse direction
and another which combines a time reversal with a
reflection in the plane spanned by the periapse and angular
momentum directions.] Let G be a finite subgroup ofOð3Þ:
S is “G symmetric” if, for every g ∈ G, S has a symmetry
of the form Uτg, and S is “G *symmetric” if, for every
g ∈ G, S has a symmetry of the form Uτg or a *symmetry
of the form TcUτg. Any G-symmetric swarm is also an
H-symmetric swarm, where H is an index-two subgroup
of G obtained by restricting to the symmetries of S that
do not involve time reversal.
Themost basic type ofG-symmetric swarm is a “primitive

G-symmetric swarm.” Every primitive G-symmetric
swarm may be constructed in the following two steps.
First, choose a one-dimensional representation α of G,
i.e., a function that maps each element g ∈ G to a complex
phase αðgÞ ¼ e2πiτðgÞ and satisfies αðg1g2Þ ¼ αðg1Þαðg2Þ.
Second, choose an integer n and a fiducial satellite
orbit x̄ and construct the set of orbits S½G; α; n; x̄� ¼
fU½τðgÞþm�=ngx̄jg ∈ G;m ∈ Zng. If we take the union of
two or more primitive G-symmetric swarms based on the
same G, α, and n (but different fiducial orbits x̄1, x̄2, …),
we obtain another G-symmetric swarm, and any such
swarm may be obtained this way.
The most basic type of G-*symmetric swarm is a

“primitive G-*symmetric swarm.” Every primitive G-
*symmetric swarm may be constructed in the following
three steps. First, choose H, an index-two subgroup of G,
and let g� denote some (arbitrary but fixed) element of G
that is not in H: every element g ∈ G may either be written
as g ¼ h (h ∈ H) or as g ¼ g�h (h ∈ H). Second, choose a
one-dimensional representation α of H, αðhÞ ¼ e2πiτðhÞ,
satisfying αðg�hg−1� Þ ¼ αðhÞ� and αðg2�Þ ¼ 1. Third,
choose an integer n and a fiducial satellite orbit x̄
and construct the set of orbits S½G;H; α; n; x̄� as the
union of two sets: fU½τðhÞþm�=nhx̄jh ∈ H;m ∈ Zng and
fTcU½τðhÞþm�=ng�hx̄jh ∈ H;m ∈ Zng. If we take the union
of two or more primitive G-*invariant swarms based on the
same G, H, α, n, g�, and c (but different fiducial orbits x̄1,
x̄2, …), we obtain another G-*symmetric swarm, and any
such swarm may be obtained this way.
For example, the four-satellite orbit described in the

previous section is a primitiveG-*symmetric swarm, where
G ¼ Oh ¼ �432 is the achiral octahedral group (i.e., the
full symmetry group of the cube, including rotations and
reflections), the index-two subgroup is H ¼ Th ¼ 3 × 2
(the pyritohedral group), and the one-dimensional repre-
sentation α of H is Eu (in Mulliken notation).
A primitive G-symmetric or G-*symmetric swarm is

generated by acting on a fiducial satellite orbit x̄ with
njGj distinct operations (where jGj is the order of G);
this process will generically produce a swarm with njGj
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satellites. But if the fiducial orbit x̄ and representation
α are chosen carefully, then x̄ will be invariant under some
subgroup K of the these operations, and we will instead
generate a primitive G-invariant swarm in which the
number of satellites is only njGj=jKj. Such orbits, in which
an especially small number of satellites manage to re-
present an especially large number of symmetries, are of
special interest and importance: the natural figure of merit
here is jKj=n or, equivalently, the total number of sym-
metries jGj divided by the total number of satellites in the
G-invariant swarm S. We call this number the “choreog-
raphy” χ of the swarm S: a swarm S with large χ is like a
delicately choreographed dance. Since the finite subgroups
G ∈ Oð3Þ (i.e., the “three-dimensional point groups”) have
been completely classified [8] and the one-dimensional
representations α of these groups are all known, it is
straightforward to systematically sift through all possible
swarms: we have done this and found that the swarm
of highest choreography is precisely the four-satellite
configuration (2) introduced in the previous section, with
choreography χ ¼ 12 [10].
Generalizations.—The symmetric satellite swarms in the

previous section are a special case of a more general class
of object with choreographic order. It is natural to general-
ize the previous section in two different ways.
Choreographic crystals on various geometries: Just as it

is interesting to study static lattices, crystals, and tilings on
a wide variety of different spaces (the two-sphere, the three-
sphere, 2D Euclidean space, 3D Euclidean space, etc.), it is
interesting to study choreographic order on a wide variety
of spaces. Choose an underlying space or space-time (i.e.,
an underlying Riemannian or pseudo-Riemannian geom-
etry)M with isometry group G, choose a discrete subgroup
G ∈ G, choose a one-dimensional unitary representation
α of G: αðgÞ ¼ e2πiτðgÞ (g ∈ G), and choose a fiducial
curve x̄ ¼ x̄ðtÞ in M, where t is a parameter along x̄.
(Arguably the most natural case is when x̄ is a geodesic of
M and t is an affine parameter, but we need not restrict
ourselves to this case.) If x̄ forms a closed loop, with t
varying over a finite range, we rescale it so that 0 ≤ t < 1,
and if x̄ is an infinite curve, with t extending from −∞ to
þ∞, we distribute an infinite number of points along
the curve (evenly spaced in t) and again rescale t so
that the spacing between successive points is unity. Finally,
we generate the “primitive G-symmetric choreographic
lattice” C½M;G;α;n;x̄�¼fU½τðgÞþm�=ngx̄jg∈G;m∈Zng. The
union of two of more such lattices based on the same M,
G, α, and n (but different fiducial orbits x̄1, x̄2, …) is
another G-symmetric choreographic lattice, and any such
lattice may be obtained this way. Alternatively, if H is
an index-two subgroup of G, g� is an element in G that is
not in H, and αðhÞ ¼ e2πiτðhÞ is a one-dimensional unitary
representation of H satisfying αðg�hg−1� Þ ¼ αðhÞ� and
αðg2�Þ ¼ 1, then we may generate the “primitive G-*sym-
metric choreographic lattice” C½M; G;H;α; n; x̄� as the

union of the two sets fU½τðhÞþm�=nhx̄jh ∈ H;m ∈ Zng
and fTcU½τðhÞþm�=ng�hx̄jh ∈ H;m ∈ Zng. The union of
two or more primitive G-*invariant choreographic lattices
based on the same M, G, H, α, n, g�, and c (but different
fiducial orbits x̄1, x̄2, …) is another G-*symmetric lattice,
and any such lattice may be obtained this way.
In this generalized context, we calculate the choreogra-

phy χ as follows. In a G-symmetric (or G-*symmetric)
lattice, the isometry group G “folds” the underlying
geometry M down to an irreducible patch or orbifold
O, or, in the other direction, the images of O under the
action of G give a natural tiling ofM. The choreography χ
is the number of orbifold tiles per point in C (or, equiv-
alently, jKj=n, where K is the stabilizer of x̄). This
definition continues to be well defined even when jGj
and the number of points in the C are infinite.
An example should help bring the preceding formalism

to life. If we focus on the simple case where the background
geometry M is the two-dimensional Euclidean plane and
the fiducial trajectory x̄ is a geodesic in the plane (a straight
line, with a particle moving along it at constant velocity),
then the left panel in Fig. 1 shows what we believe to be the
choreographic lattice of highest choreography (χ ¼ 12),
while the right panel shows another choreographic lattice
with χ ¼ 6.
Generalized choreographic order: The choreographic

lattices we have constructed thus far have come from
simultaneously letting the isometry group G ∈ G of the
background geometry G act on the orbits in two different
ways—“directly” (x̄ → gx̄) and via a one-dimensional
unitary representation (x̄ → UτðgÞx̄)—and taking advantage
of the interplay between these two actions. There are other
interesting possibilities in this direction which make use of
other higher-dimensional representations. As a first exam-
ple, imagine a swarm S in which the individual particles are

FIG. 1. The 2D planar choreographic crystal of highest chor-
eography (left) and another close contender (right). Each arrow
shows the initial position and velocity of a point that proceeds to
move along a straight line (i.e., a geodesic in Euclidean space).
Under each crystal, we have shown a colored tiling meant to help
the reader see how the dance proceeds (from blue to yellow to
pink, in repeating pattern).
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not featureless satellites but rather spin s particles: then it
would be natural to consider systems generated by letting
the isometry group G ∈ Oð3Þ simultaneously act in three
different ways: via the direct action (on the orbit’s ori-
entation x̄ → gx̄), via a one-dimensional unitary represen-
tation (that acts on the particle’s orbital phase x̄ → UτðgÞx̄),
and via a ð2sþ 1Þ-dimensional representation (that acts on
the particle’s spin). From a quantum mechanical stand-
point, one might also consider N-dimensional representa-
tions ofG that entangle collections ofN particles by mixing
them (or their associated wave functions) at the same time
as the isometry group acts on the underlying geometry
directly. It seems that many interesting forms of generalized
choreographic order may be possible here.
Diffraction signatures.—An important open question is

whether any actual many-body systems exhibit choreo-
graphic order, either in their ground state [11] or when
appropriately prepared and/or driven. Whether or not such
systems occur naturally, it should be possible to engineer
them in the lab. In either case, they should exhibit
distinctive signatures in diffraction experiments, as we
shall now explain.
Modified Bragg law: To get the idea, first recall that, in

ordinary Bragg diffraction (from a static crystal), the

diffraction peaks obey two rules [1]: (i) the differenceΔ~k≡
~kf − ~ki between the initial and final wave vector is a point
in the crystal’s reciprocal lattice, while (ii) the difference
Δω≡ ωf − ωi between the initial and final frequency
vanishes. In the case of choreographic order, the crystal
may be divided into N congruent sublattices, each moving
with a different velocity. (For example, the lattices in Fig. 1
may be decomposed into three sublattices with different
velocities.) We can calculate the diffraction separately for
each sublattice and then superpose the results. The dif-

fraction due to sublattice β has the following properties: Δ~k
is a point in the sublattice’s reciprocal lattice, while Δω is

nonvanishing and given by Δω ¼ ~vβ · Δ~k, where ~vα is the
velocity of the sublattice [20]. Let us see the effect of this
modified Bragg law in two standard experimental configu-
rations [1]: von Laue diffraction and powder diffraction.
von Laue diffraction and powder diffraction: In von

Laue diffraction, a beam of particles of mass m (with a
range of energies, but a single fixed direction k̂i) is
scattered off a single crystal of fixed orientation. First
focus on a particular diffraction peak due to sublattice β

(corresponding to a particular point ~K in its reciprocal
lattice). If sublattice β were at rest, this peak would lie in
the direction k̂f, with wave number k̄ and frequency
ω̄¼ðm2þ k̄2Þ1=2, but when we give the sublattice a small
velocity ~vβ, the direction and frequency of the peak
change (to first order in ~vβ) as follows: the perturbed
peak still lies in the unperturbed scattering plane spanned
by k̂i and k̂f, but the scattering angle θ shifts from its

unperturbed value cos θ0 ¼ k̂i · k̂f to the perturbed value

cos θ ¼ cos θ0 − ð~vβ · ~KÞðω̄=k̄2Þð1þ cos θ0Þ, while the

frequency shifts by δωf ¼ ð~vβ · ~KÞ cos θ0=ðcos θ0 − 1Þ.
When we superpose the diffraction pattern from the N
different sublattices, we see that for the most part, the
peaks from different sublattices do not overlap, but instead
group into N-tuplets with small angular and frequency
splittings described by the preceding formulas. But for
certain values of ~K, it can happen that ~vβ · ~K and ~vγ · ~K are
the same, for two different sublattices β and γ: in this case,
these two peaks will interfere with one another, with
the interference phase ð~xβ − ~xγÞ · ~K, where ~xβ and ~xγ are
arbitrarily chosen points in sublattices β and γ, at some
arbitrary time t. In powder diffraction, a beam with a
single fixed energy ω̄ and direction k̂i is scattered off a
powder made up of crystals with all possible orientations.
In this case, when we give sublattice β a small velocity ~vβ,
the scattering angle θ is shifted from its unperturbed value
by θ0 to cos θ ¼ cos θ0 þ ð~vβ · ~KÞðω̄=k̄2Þ½1 − cos θ0�,
while the unperturbed frequency ω̄ is shifted by δωf ¼
~vβ · ~K. Otherwise, the story is the same as in the von Laue
case: the peaks group into N-tuplets, with small splittings
given by the preceding formulas, and interference when
~vβ · ~K ¼ ~vγ · ~K, with interference phase ð~xβ − ~xγÞ · ~K.
The possible crystals in 2D and 3D Euclidean space, and

their corresponding diffraction patterns, will be explored
further in subsequent work [21]. In the future, it will
be interesting to reconsider the vibrational modes of an
ordinary crystal, by thinking of them as a special type of
choreographic crystal, or to explore the possible connec-
tions with previous work on generating higher harmonics
of laser fields (which also relies crucially on the combined
space-time symmetries of the system in question) [22–29],
or to consider the possibility of choreographic quasicrys-
tals. It would, of course, be wonderful to engineer an
example of a choreographic crystal in the lab, and even
more wonderful to find a condensed-matter system that has
intrinsic choreographic order.
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