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The Keldysh-ordered full counting statistics is a quasiprobability distribution describing the fluctuations
of a time-integrated quantum observable. While it is well known that this distribution can fail to be positive,
the interpretation and origin of this negativity has been somewhat unclear. Here, we show how the full
counting statistics can be tied to trajectories through Hilbert space, and how this directly connects negative
quasiprobabilities to an unusual interference effect. Our findings are illustrated with the example of
energy fluctuations in a driven bosonic resonator; we discuss how negative quasiprobability here could
be detected experimentally using superconducting microwave circuits.
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Introduction.—Quasiprobability distributions such as the
Wigner function [1] are powerful tools that allow one to
visualize quantum states in phase space. They have played
a seminal role in quantum mechanics since the early
beginnings of the theory. Among their many uses are the
identification of nonclassical states: these are states where
the Wigner function (or some other related distribution)
fails to be positive definite (see, e.g., Ref. [2]). Such
nonclassicality can constitute a resource for quantum
information processing [3,4].
Recently, a very different kind of quasiprobability

distribution has found widespread utility, the so-called
full counting statistics (FCS) [5–7]. Unlike the Wigner
function, the FCS does not describe the instantaneous state
of a quantum system, but rather describes its time history
and dynamics: it characterizes the fluctuations of a time-
integrated quantum observable. As has been discussed
extensively, the FCS distribution describes the “intrinsic”
fluctuations of the system absent any coupling to a
measurement device [7,8]. Nonetheless, it can be used to
directly predict the outcome of realistic measurement
setups, where the added noise of the measurement com-
bines with the intrinsic system fluctuations to determine the
final measured distribution [7–10]. FCS first arose in the
study of current fluctuations in quantum electronic con-
ductors, where the transmitted charge is the time integral of
the current operator [5,6,11]; it continues to be a crucial
tool in quantum transport, and has also been used to
characterize cold atom systems [12], work [13] and heat
fluctuations [14], dynamical phase transitions of classical
systems [15,16], and quantum-optical systems [8]. FCS
have also recently been connected to weak measurement
theory [9,17].
Similar to conventional quasiprobability distributions,

the FCS distribution can fail to be positive definite. As
the FCS describes the time history of a system, negativity
here is indicative of the presence of nonclassical temporal

correlations and/or dynamics which render a backaction-
free measurement impossible [8,9]. Largely because many
of the most studied systems are immune to backaction (e.g.,
gauge invariant electronic transport at long times), and thus
described by a positive-definite FCS [7], very little work
has been undertaken on the meaning, origin, or utility of
negative FCS; notable exceptions are Refs. [8–10,18–20].
Considering the utility of negativities in more conventional
quasiprobabilities, it is desirable to obtain a better under-
standing of negative FCS.
In this work we present a clear physical picture for how

negative FCS emerge. We connect the FCS distribution
to trajectories the system takes through Hilbert space. The
resulting expression gives an intuitive understanding of
the microscopic processes that contribute to the FCS and
allows us to show that negative FCS are the direct result
of an unusual interference phenomena: the interference of
amplitudes associated with two trajectories can contribute
to the quasiprobability, even though the classical proba-
bilities for each trajectory do not contribute. Our approach
also demonstrates why negative FCS in general requires
systems where a few degrees of freedom are relatively
isolated. We stress that, in contrast with Refs. [7,21–23],
our main focus is to understand the negativity in the FCS,
and not on how the inclusion of detectors modifies the FCS
and restores positivity in the final measured distribution.
Nonetheless, our approach also gives an intuitive picture
of this process [see Supplemental Material [24]]. Our
approach is particularly well suited to investigating the
short-time FCS, a regime that is relevant to fast exper-
imental protocols but that has received only limited
attention.
To make the utility of our approach clear, we focus on a

particularly simple system that exhibits negative FCS: the
time-integrated energy fluctuations in a coherently driven
bosonic single-mode resonator. The FCS here are particu-
larly amenable to experimental measurement, and their
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negativity was recently discussed as a potentially powerful
way to detect nonclassical behavior in an optomechanical
system [20]. Finally, we analyze a realistic circuit quantum
electrodynamics (cQED) measurement setup for detecting
negative FCS.
Definition of FCS.—We consider an observable n̂ðtÞ in

the Heisenberg picture, and are interested in characterizing
the fluctuations of its time integral m̂ ¼ R

t
0 dt

0n̂ðt0Þ. Since
n̂ðtÞ does not necessarily commute with itself at different
times, the higher moments of m̂ will be contingent on
how one chooses to time order the various factors of n̂.
The well-developed field of FCS resolves this ambiguity
by considering how one would measure m̂; guided by
this, the appropriate moment generating function for m is
[5–7] (ℏ ¼ 1)

ΛðλÞ≡
Z

dmPðmÞe−iλm ≡ Trfe−iĤλtρ̂eiĤ−λtg; ð1Þ

where PðmÞ is the quasiprobability distribution of interest
(the FCS), ρ̂ is the system density matrix at t ¼ 0, and
Ĥλ¼Ĥþλn̂=2, with Ĥ being the Hamiltonian of the system.
A simple way to motivate Eq. (1) is to consider an

idealized measurement where an auxiliary qubit couples
to n̂ via Ĥc ¼ λn̂σ̂z=2 [5]. If n̂ were a classical stochastic
variable nðtÞ, the qubit would precess by an angle
λm ¼ λ

R
t
0 dt

0nðt0Þ, and the off-diagonal reduced density
matrix element would directly yield the average of
expð−iλmÞ, i.e., the moment generating function. This then
motivates Eq. (1) in the quantum case. This is only one
of several idealized measurement schemes that lead to
Eq. (1) [7,8,20]. Equation (1) can also be motivated by the
Keldysh path-integral approach [25]. The time ordering
of n̂ðtÞ, which ultimately leads to the negativities in the
FCS, is thus dictated by the fact that the FCS is a
measurement-independent quantity.

Unravelling the FCS.—In the spirit of Feynman’s path-
integral approach, we now divide the time evolution in
Eq. (1) into N infinitesimal steps of duration δt; between
these partitions, we introduce resolved identity operators.
We start with the simplest case, where n̂ has a discrete
spectrum, and further, where our system has no additional
quantum numbers, such that I ¼ P

njnihnj is the identity
operator. Inserting the identities allows us to replace the
operator n̂ by its eigenvalues. The FCS can then be
obtained by Fourier transforming Eq. (1),

PðmÞ ¼
X

~nL;~nR

δnLf ;nRf δ

�
m −

1

2
mL −

1

2
mR

�

× hnL1 jρ̂jnR1 iAð~nLÞA�ð~nRÞ; ð2Þ

with the amplitudes

Að~nαÞ ¼ hnαfje−iĤδtjnαNi � � � hnα2je−iĤδtjnα1i: ð3Þ

Here the nαj denote the states inserted at the jth time slice
either on the left (α ¼ L) or on the right side of the density
matrix (α ¼ R) in Eq. (1). The quantity Að~nαÞ gives the
amplitude for a trajectory through Hilbert space, defined
by the vector ~nα ¼ ðnα1;…; nαN; n

α
fÞ. The time integral of the

observable n̂ over such a discrete trajectory is given by
mα ¼

P
jn

α
jδt. Examples of such trajectories are illustrated

in Figs. 1(a) and 1(b). Finally, as we are interested in the
δt → 0 limit, we neglect terms that are order ðδtÞ2 and higher.
Each term in Eq. (2) describes the contribution to PðmÞ

from a pair of trajectories ~nL and ~nR; the second line is the
product of probability amplitudes for each of the trajecto-
ries, weighted by the density matrix element corresponding
to the initial “position” of each trajectory. The trajectories
are summed over, given the constraints on the first line. The
Kronecker delta enforces the two trajectories to end at the

FIG. 1. FCS for a bosonic resonator and contributing pairs of trajectories. (a) Illustration of a pair of trajectories contributing to Pðm0Þ,
where the m value of each trajectory is the same: mL ¼ mR ¼ m0. Such pairs yield a positive contribution. (b) Illustration of a pair of
trajectories with mL ≠ mR, but ðmL þmRÞ=2 ¼ m0. As discussed in the text, such a pair can yield a negative contribution to Pðm0Þ.
(c) FCS for a cavity initially prepared in the n0 ¼ 2 Fock state. The analytical result (black, solid line) consists of a contribution where
the jumps are located on different trajectories (blue, dotted line) and a contribution where the jumps are located on the same trajectory
(red, dashed line). The singular, zero-jump contribution of Eq. (5) is omitted. A Monte Carlo simulation (gray line) using 50 000
trajectories is in good agreement with the analytical results. Parameters are time t ¼ 4=Δ, drive strength f ¼ Δ=16, where Δ is the drive
detuning.
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same position and is a consequence of the trace in Eq. (1).
The Dirac delta tells us that a pair of trajectories contributes
to PðmÞ when m is equal to the average of mL and mR.
While Eq. (2) is just a direct representation of the

standard FCS PðmÞ distribution, we immediately notice
a rather strange feature: for a given particular value m0, the
interference terms between two trajectories can contribute
to Pðm0Þ even though the corresponding classical proba-
bilities do not. To be explicit, suppose we have a pair of
trajectories with m values mL and mR. The classical
probability from each trajectory, i.e., the terms proportional
to jAð~nLÞj2 and jAð~nRÞj2, contribute to PðmLÞ and PðmRÞ,
respectively. Their interference terms, i.e., the terms pro-
portional to Að~nLÞA�ð~nRÞ and Að~nRÞA�ð~nLÞ, contribute
instead to PðmL=2þmR=2Þ. If mL ≠ mR, the interference
terms are thus separated from their classical probabilities,
allowing the quasiprobability distribution PðmÞ to become
negative. We thus have one of the key conclusions of our
approach: negativity in the distribution PðmÞ is directly
and necessarily connected to a kind of anomalously strong
influence of interferences between pairs of trajectories.
This motivates us to separate the contributions to the

sum in Eq. (2) into two generic kinds. Terms withmL ¼ mR
are denoted “classical” contributions. These yield a total
contribution to PðmÞ that is positive definite. Terms with
mL ≠ mR are denoted “interference” contributions. These
are the interference terms that are separated from their
classical probabilities and responsible for any negativities
in the FCS. Examples of pairs of trajectories yielding
classical and interference contributions to PðmÞ are illus-
trated in Figs. 1(a) and 1(b).
Driven cavity.—We now illustrate our trajectory

approach to FCS by considering a coherently driven
bosonic single-mode resonator, first in the absence of
any dissipation. This constitutes a simple system that is
amenable to cQED [26–28] and optomechanical [29,30]
experiments. In the frame rotating at the driving frequency,
the Hamiltonian of the system reads

Ĥ ¼ Δâ†â − fðâ† þ âÞ; ð4Þ
where Δ denotes the detuning of the drive and f the drive
strength (which we take to be real without loss of general-
ity). We are interested in the photon number fluctuations,
n̂ ¼ â†â. Despite the seemingly trivial nature of the system
and its linear dynamics, we are measuring a nonlinear
observable, and the integrated-energy fluctuations are
described by negative FCS [8].
The coherent drive can induce jumps in the trajectories

(i.e., from one Fock state to another), whereas the detuning
introduces a phase factor in Að~nLÞA�ð~nRÞ whenever
mL ≠ mR. For ft ≪ 1, only pairs of trajectories with a
low number of jumps will contribute to the FCS, and we can
make some analytical progress. To this end, we consider an
initial Fock state ρ̂ ¼ jn0ihn0j and pairs of trajectories
including a total of up to two jumps. The contribution from
pairs exhibiting no jumps at all is given by

P0ðmÞ ¼ δðm − n0tÞ: ð5Þ
The zero jump contribution thus reflects the initial distri-
bution and does not decay with time. To ensure the
normalization of PðmÞ, all contributions with a higher
number of jumps must thus average to zero: this ensures
negativities in the FCS as long as the dynamics of the system
is nontrivial. These considerations remain valid for an
arbitrary initial state.
For an initial Fock state, there is no contribution from

pairs of trajectories exhibiting a single jump in total because
of the Kronecker delta in Eq. (2). The two jump contribution
is discussed in the SupplementalMaterial [24] and plotted in
Fig. 1(c) together with aMonte Carlo simulation of the FCS.
As illustrated in Fig. 1(c), the distribution PðmÞ shows a
highly nontrivial behavior and becomes negative over a
substantial range of its argument. The jump at m=t ¼ n0 as
well as the kinks at m=t ¼ n0 � 1=2 are a consequence of
the discreteness of photon numbers and can be well under-
stood in terms of the few trajectories that contribute at short
times (see Supplemental Material [24]).
We stress that these unusual short-time features also

occur for different choices of initial states, including a
coherent state; in that case, our calculations agree with
the approach used in Refs. [8,31] (see also Fig. 2). The
presence of negative FCS is thus not a function of the initial
state, but rather reflects the nonclassicality of the system
dynamics; this is in stark contrast to the Wigner function
(where coherent states exhibit no negativity). We thus
conclude that even systems that remain in a seemingly near-
classical state at all times can exhibit extremely non-
classical behavior in their dynamics.
Additional degrees of freedom.—Equation (2) (and the

single resonator example) discussed so far are somewhat
special cases, in that the relevant dynamics only involves a
single degree of freedom. As we now show, if the dynamics
starts to couple to additional degrees of freedom, negativity
can be rapidly lost, as there is a strong suppression of the
required “interference” contributions.
Consider first the situationwhere the additional degrees of

freedom correspond to a dissipative environment; for
concreteness, we return to our example of a driven resonator,
and add a coupling to a Markovian bath. In such
a situation, the contribution of the bath to the dynamics
can be modeled in terms of dissipative quantum jumps, in
complete analogy to how they are treated in the standard
quantum trajectory approach of quantum optics [32].
These dissipation-induced jumps are described by the
superoperators

J↓ρ̂ ¼ κðnB þ 1Þâ ρ̂ â†; J↑ρ̂ ¼ κnBâ†ρ̂ â; ð6Þ
where κ is the energy damping rate and nB is the thermal
occupation number of the bath at the cavity frequency. The
first (second) term describes photons that are lost to (gained
from) the bath.
We can again incorporate these jump operators into a

path-integral expression for the FCS distribution function
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PðmÞ; see Supplemental Material [24]. Similar to standard
quantum trajectory theory, the dissipation correlates the
behavior of the left and right trajectories, thus suppressing
the negativity-induced interference contributions (which
require distinct trajectories on the left and on the right). For
a purely dissipative process, the left and the right trajecto-
ries are always identical and the FCS always positive, being
a simple sum of classical probabilities. In this case, the FCS
recovers the results obtained by classical master equations
(see Fig. 2). Details on the dissipative FCS calculation are
provided in the Supplemental Material [24] along with a
discussion on how coupling coherently to an additional
degree of freedom also suppresses negativity.
Time evolution of the FCS.—To stress the utility of

our approach we consider the time evolution of the FCS
in an experimentally relevant system. To this end, we add
dissipation to our driven cavity system resulting in the
Lindblad master equation

dρ̂
dt

¼ −i½Ĥ; ρ̂� − κ

2
fâ†â; ρ̂g þ κâ ρ̂ â†; ð7Þ

where Ĥ is given in Eq. (4). As an initial state, we take the
steady-state solution which is given by a coherent state with
an average photon number, nD ¼ 4f2=ðκ2 þ 4Δ2Þ. Since in
this case the Wigner function is Gaussian at all times, we
use the method described in detail in Refs. [8,31] to
calculate the moment generating function. The time evo-
lution of the resulting FCS is illustrated in Fig. 2. At very
short times [cf. Fig. 2(a)], the FCS is dominated by sharp
peaks at integer m=t corresponding to trajectories where
the photon number remains constant. At large times
[cf. Fig. 2(c)], the FCS is a smooth function centered
around the mean photon number nD. At times where the
trajectories with few jumps dominate [cf. Fig. 2(b)], the
FCS exhibits features in between the peaks at integer m=t.
For a purely dissipative process, the FCS is continuous

in between the peaks and can be captured by a classical
calculation involving only occupation probabilities. In the
presence of a coherent drive, the FCS exhibits a surprising
shape with discontinuities at half-integer m=t. In complete
analogy to Fig. 1(c), this can be well understood in terms
of the few-jump trajectories and ultimately results from
the discreteness of the number of photons. The jumps at
half-integerm=t are a consequence of the coherences in the
initial state. Our approach thus allows for a quantitative
understanding of the nontrivial short-time FCS.
Reconstructing the FCS.—As discussed in detail in the

Supplemental Material [24], measurement noise (uncer-
tainty and backaction) will often mask the sharp features
that are characteristic for the short-time regime. Motivated
by the exceptional quality of cQED experiments [26–28],
we thus dedicate the remainder of this Letter to the
reconstruction of the FCS by coupling a qubit dispersively
to the observable of interest. As discussed above, the
(unperturbed) moment generating function Eq. (1) can
be accessed through the off-diagonal density matrix
element of a qubit which couples to the observable of
interest with the coupling Hamiltonian, Ĥc ¼ λn̂σ̂z=2.
Since the FCS is given by the Fourier transform of the
moment generating function, the latter would have to be
measured for all possible values of the coupling strength λ
in order to faithfully reconstruct the FCS. Here we are
interested in how well this reconstruction performs if the
measurements are limited in number and the coupling
strength cannot exceed a maximal value.
As shown in Fig. 2(b), a maximal coupling strength of

λmax ≈ 420κ with 500 equally spaced measurement points
is sufficient to reconstruct most features of the FCS.
As discussed in the Supplemental Material [24], this
procedure is robust against uncertainties in the coupling
strength up to a magnitude of ∼κ=2. However, some care

FIG. 2. Time evolution of the integrated-energy FCS for a damped cavity initially prepared in a coherent state. The blue curve shows
the FCS in the presence of a coherent drive with strength f=κ ¼ ffiffiffi

5
p

=2, where κ is the energy damping rate. The green curve shows the
FCS describing the dissipative emptying of the cavity (f ¼ 0). The resulting distribution is fully positive and can be described with a
classical model. (a) At very short times, the FCS is dominated by peaks at integer m=t reflecting the initial photon distribution.
(b) The exchange of photons with the coherent drive and the dissipative bath leads to features in between the peaks which can be
understood in terms of the few-jump trajectories. An experimental reconstruction of the FCS (red, dash-dotted line) using an auxiliary
qubit detector is feasible using 500 measurements covering a range of λ up to λmax ¼ 418.9κ (see main text). (c) At long times, the
FCS is a continuous function peaked around the mean photon number in the cavity. Except for the reconstructed FCS, all distributions
are convolved with a sharply peaked Gaussian (width σ ¼ tκ=10) to resolve the Dirac deltas. For all panels, the drive is on
resonance Δ ¼ 0.
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has to be taken in the choice of λmax and the postprocessing
of the measured values.
Conclusions.—By unraveling the FCS in terms of tra-

jectories through Hilbert space, we demonstrated that
negative FCS arise from a peculiar interference effect, where
the interference contribution from a pair of trajectories can
contribute without the corresponding classical probabilities.
Our approach highlights how negative FCS are directly tied
to nonclassical dynamics, in contrast to standard quasiprob-
abilities which characterize nonclassical states. We hope
that the understanding of negative FCS presented here will
inspire furtherwork on nonclassical dynamical processes, as
well as experiments to measure these effects.
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