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In the context of two illustrative examples from supersymmetric quantum mechanics we show that the
semiclassical analysis of the path integral requires complexification of the configuration space and action,
and the inclusion of complex saddle points, even when the parameters in the action are real. We find new
exact complex saddles, and show that without their contribution the semiclassical expansion is in conflict
with basic properties such as the positive semidefiniteness of the spectrum, as well as constraints of
supersymmetry. Generic saddles are not only complex, but also possibly multivalued and even singular.
This is in contrast to instanton solutions, which are real, smooth, and single valued. The multivaluedness of
the action can be interpreted as a hidden topological angle, quantized in units of π in supersymmetric
theories. The general ideas also apply to nonsupersymmetric theories.
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Introduction.—We address the question of how to prop-
erly define the semiclassical expansion of the path integral in
quantummechanics and quantum field theory. This question
goes beyond the problem of studying the semiclassical
approximation, because the theory of resurgence shows that
the semiclassical expansion encodes perturbative as well as
nonperturbative effects, and may provide a complete defi-
nition of thepath integral [1,2].We consider a set of examples
for which we show that the path integral measure and action
must be complexified, and that novel complex saddle points
appear. The usefulness of complexification is not surprising
from the point of view of the steepest descent method for
ordinary integration, but important new effects appear in
functional integrals. We show that in generic cases complex-
ification is indeed essential. Our results go beyond proposals
in the literature to complexify the path integral in caseswhere
coupling constants are analytically continued away from
their physical values, as described in the work of Witten on
Chern-Simons theory [3], and Harlow, Maltz, and Witten
on Liouville theory [4], and is potentially related to the
complexification of the phase-space formulation of path
integral [5]. Complex saddles were previously studied as a
computational tool in quantum mechanics; see, e.g., [6–9].
Complex path integrals were also studied in connection with
the sign problem in the Euclidean path integral of QCD and
related model systems at finite chemical potential [10–14].
Here, we demonstrate the necessity of complexification
even for the physical theory with real couplings. In [15]
we show that these complex saddles have a natural inter-
pretation in terms of thimbles in Picard-Lefschetz theory.
There are several calculations in field theory that suggest

the importance of complex saddle points. As an exa-
mple, consider N ¼ 1 supersymmetric gluodynamics on
R3 × S1 with supersymmetry (SUSY)-preserving boundary

conditions. This theory is confining, and it has a non-
perturbatively generated bosonic potential for the Polyakov
line. The potential for the Polyakov line can be computed
using bions, molecules of monopole instantons [16,17].
Bions also determine the vacuum energy, with the con-
clusion that supersymmetry is unbroken, e.g, for SUð2Þ
theory, Egr ∝ −e−2Sm − e−2Sm�iπ ¼ 0, where the first term
is from a magnetic bion and the second is from a neutral
bion. This calculation agrees with a calculation based
on supersymmetry and the monopole-instanton-induced
superpotential [18]. A puzzle concerning this result is that
the sum over different bion types give zero vacuum energy,
despite the fact that contribution of real saddles is univer-
sally negative semidefinite [19].
The calculations in [17,20] are based on an analytic conti-

nuation in the coupling constant. Reference [21] reinterprets
the relative sign between the two different bion types as a
hidden topological angle (HTA), a factor expðiπÞ associated
with the relative phase in the quasizero mode Lefschetz
thimble, which is nothing but a direction in field space.
This result suggests that the calculation can be done directly
for real values of g, and that bions arise as exact (non-
Bogomol’nyi-Prasad-Sommerfield) saddle-point solutions of
the complexified path integral, and furthermore that the HTA
is related to the imaginary part of the complexified action.
SUSY gluodynamics on R3 × S1 is not an isolated case.

Similar phenomena occur in N ¼ 1 SUð2Þ SUSY QCD
[22], in three-dimensional SUSY gauge theory [23], and in
N ¼ 2 SUSY quantum mechanics [24]. In this Letter we
make the basic idea precise in the context of SUSY
quantum mechanics.
Formalism and holomorphic Newton’s equation.—

Consider the Euclidean quantum mechanical path integral
as a sum over real paths, Z ¼ R

DxðtÞ exp½−ð1=ℏÞSE�, with
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SE ¼ R
dt½1

2
_x2 þ VðxÞ�. The critical points solve Newton’s

equation in the inverted potential, d2x=dt2 ¼ þ∂V=∂x.
This leads to the standard multi-instanton calculus in quan-
tum mechanics. More general saddle points appear in the
complexified path integral

Z¼
Z
Γ
Dze−ð1=ℏÞS½zðtÞ�; S½zðtÞ� ¼

Z
dt

�
1

2
_z2þVðzÞ

�
; ð1Þ

where Γ is an integration cycle that has the same dimensio-
nality as the original real path integral. The critical points
of the complexified path integral solve the holomorphic
Newton’s equation in the inverted potential −VðzÞ: δS=δz¼
0⇒ d2z=dt2¼þ∂V=∂z. In terms of real and imaginary
parts of the potential, VðzÞ ¼ Vrðx; yÞ þ iViðx; yÞ, we get

d2x
dt2

¼ þ ∂Vr

∂x ;
d2y
dt2

¼ −
∂Vr

∂y ; ð2Þ

where we have used the Cauchy-Riemann equations ∂xVr ¼
∂yVi and ∂yVr ¼ −∂xVi. An important aspect of (2) is that it
does not describe an ordinary two-dimensional classical
mechanical system: the holomorphic classical mechanics is
not the sameas themotionof a particle in the two-dimensional
inverted potential −Vrðx; yÞ. Instead of the usual Newton

equations with force ~∇Vrðx; yÞ, the force in the x direction is
due to ∇xVrðx; yÞ while the force in the y direction is due to
−∇yVrðx; yÞ. This has interesting consequences.
Supersymmetric quantum mechanics.—Consider super-

symmetric quantum mechanics with the superpotentialWðxÞ

S ¼
Z

dt

�
1

2
_x2 þ 1

2
ðW 0Þ2 þ ½ψ̄ _ψ þpW″ψ̄ψ �

�
; ð3Þ

corresponding to p ¼ 1. The parameter p will be used to
deform the theory away from the supersymmetric point [9].We
choose WðxÞ with more than one critical point, so that there
will be real instantons. By projecting to fermion number
eigenstates one obtains a pair of Hamiltonians H� [25],

H� ¼ 1

2
p̂2 þ V�ðxÞ; V�ðxÞ ¼

1

2
½W 0ðxÞ�2 � ðp=2ÞW″ðxÞ:

ð4Þ
In the following we consider superpotentials of the form
WðxÞ ¼ ð1=gÞWð ffiffiffi

g
p

xÞ, and rescale x ¼ ffiffiffi
g

p
x. Then the

Euclidean action takes the form SE ¼ ð1=gÞ R dt½1
2
_x2þ

V�ðxÞ�. We work with the bosonized description (4). Note
that compared to the original bosonic potential 1

2
ðW0Þ2 the

bosonized theory contains an OðgÞ term that arises from inte-
grating out the fermions. The quantum modified holomorphic
equations of motion in the inverted potential −VþðzÞ is

d2z
dt2

¼ W0ðzÞW″ðzÞ þ pg
2
W‴ðzÞ: ð5Þ

Double-well potential.—Consider WðxÞ ¼ x3=3 − x, so
that VðxÞ is an asymmetric double-well potential with an

OðgÞ “tilt.” The ground-state energy of the system is zero
to all orders in perturbation theory, but nonperturbatively
supersymmetry is spontaneously broken and the ground-
state energy is nonzero and positive [25]. Note that the
positivity of the ground-state energy is a consequence
of the SUSY algebra, H ¼ 1

2
fQ; Q̄g, where Q and Q̄ are

the SUSY generators.
In the original formulation (3) this can be understood as

the contribution from approximate instanton–anti-instanton
solutions of the bosonic potential 1

2
ðW0Þ2 [9]. In the

bosonized version we seek classical solutions in the
inverted potential −Vþ. However, the real equations of
motion in the inverted potential have no finite action
configurations except for the trivial perturbative saddle
and an exact (real) bounce solution. This bounce is related
to the false vacuum and is not directly relevant for ground-
state properties, which are determined by saddles starting
at the global maximum of the inverted potential. However,
the real motion of a classical particle starting at such a
global maximum is unbounded and has infinite action.
On the other hand, the holomorphicNewton’s equation (5)

does support finite action solutions starting from the global
maximum. There are exact finite action complex solutions
that start at the global maximum of the inverted potential and
bounce back from one of the two complex turning points,
whose real part is located near the top of the local maximum;
see Fig. 1. We refer to this as the “complex bion” solution,

zcbðtÞ ¼ zcr1 −
zcr1 − zT

2
coth

�
ωcbt0
2

��
tanh

�
ωcbðtþ t0Þ

2

�

− tanh

�
ωcbðt − t0Þ

2

��
; ð6Þ

FIG. 1. Real and complex solutions in the inverted tilted
double-well potential. The inverted potential (on the real axis)
is shown in black, the real bounce and associated critical and
turning points are shown in red, and the pair of complex bions
and turning and critical points are blue. The blue points
correspond to zcr1 and zT; z�T in (6). Note that the motion takes
place in the real and imaginary parts of the complex potential, as
explained in the text.
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where zcbð�∞Þ ¼ zcr1 is the global maximum of the inverted
potential and zT ¼ −zcr1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pg=ð−zcr1 Þ

p
are the complex

turning points. ωcb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V″ðzcr1 Þ

q
is the natural frequency at

zcr1 , and the complex parameter t0 is

t0 ¼
2

ωcb
arccosh

�
3ω2

cb

ω2
cb−V″ðzcr1 Þ

�
1=2

≈
1

2ωcb
ln

�
−
16

pg

�
; ð7Þ

where Re½2t0� is the complex bion size.
It is straightforward to verify that (6) is a solution to the

holomorphic equation of motion. The solution is shown in
Fig. 2. The real part resembles an instanton–anti-instanton
pair with size lnð16=pgÞ, and the action is

Scb ≃
�
8

3g
þ p ln

16

pg
þ � � �

�
� ipπ; ð8Þ

whose real part is slightly larger than the two-instanton
action, 2SI . The sign of the imaginary part ImScb ¼ �pπ
corresponds to the choice between two complex conjugate
saddles.
The imaginary part of the action is defined modulo 2π,

so the choice between the two complex conjugate saddles
does not lead to an ambiguity in the amplitude for p ¼ 1.
However, the factor eiπ is related to a hidden topological
angle, which is crucial to obtain the correct sign for the
ground-state energy. In the semiclassical limit the ground
state can be understood as a dilute gas of complex bions,

Egs ∼ −e�iπe−2SI ∼þe−2SI > 0; ð9Þ
in agreement with known results [9,26]. The bosonized
description makes the most crucial point clear. From a
semiclassical viewpoint, the positivity of the ground-state
energy and, hence, consistency with the supersymmetry
algebra, owes its existence to the complexity of the exact
solution and to the hidden topological angle associated
with it.

This complex bion solution can also be constructed by an
analytic continuation of the real bounce solution. To this
end, we consider an analytic continuation in the parameter
p → peiθ, with corresponding potential

VθðxÞ ¼
1

2
½W0ðxÞ�2 þ ðpeiθg=2ÞW″ðxÞ: ð10Þ

Only θ ¼ 0; π are physical theories, but the continuous θ
parameter is useful in order to understand the relation
between different saddle points. The regular bounce sol-
ution starts at the local (smaller) maximum of the inverted
potential and gets reflected at a turning point below
the global (larger) maximum. This solution is described
by an ordinary elliptic integral. The analytic continuation,
p → peiθ, produces a complex solution with finite action at
any θ, and can be continued all the way to θ ¼ π, where the
local and the global maxima of the inverted potential are
interchanged. The solution comes back to itself after 4π
rotation; it has order-two monodromy. At θ ¼ �π we
obtain exactly the complex conjugate pair of complex bion
solutions (6).
Quantization of hidden topological angle in

supersymmetric theory.—In supersymmetric theories, since
ground-state energy is zero to all orders in perturbation
theory, to avoid an ambiguity in the ground-state energy, it
is essential that the imaginary part of the complex action is
a multiple of π. Here, we will give a simple proof of this
fact for the double-well potential, which extends easily to
the periodic potential. There are two complex bion sol-
utions with complex conjugate turning points and complex
conjugate actions. This means that the imaginary part of the
action can be computed from the difference of the action
of the two complex bions, ImScb ¼ �ð1=2iÞðS1cb − S2cbÞ.
We also note that the action is computed as a line integral of
the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþ VÞp

along the branch cut that connects
the turning points of the solution. Here, E is the energy
of the solution in the inverted potential. This implies that
the imaginary part of the action can be written as

ImScb ¼
1

2g

I
C
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ ðW0Þ2 þ pgW″

q
; ð11Þ

where the contour C, which arises from first going around
the branch cut connecting zcr1 and zT and then around the
cut connecting zcr1 and z�T , encircles all the points z

cr
1 ; zT; z

�
T .

This implies that we can deform the contour into a large
circle in the complex z plane. If W grows as a positive
power of z we have ðW0Þ2 ≫ W″, so that the integrand can
be expanded in powers of E=ðW0Þ2 andW″=ðW0Þ2. The first
term is a total derivative, and the second term vanishes
because its residue is zero. Terms of second order and
higher in 1=ðW0Þ vanish faster than 1=z as z → ∞. The only
contribution comes from

–t0 t00

Re[z]

Im[z]

–1

1

t

FIG. 2. Complex bion solution in supersymmetric quantum
mechanics with a double-well potential. The black and red lines
show the real and imaginary part of the solution forpg ¼ 1 × 10−6.
The characteristic size of the solution is Re½2t0�≃ 1

2
logð16=pgÞ.

For larger values of pg the two tunneling events merge.
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ImScb ¼
p
4

I
dz

W″

W0 ¼
p
2

I
dW0

W0 ¼ ipπ; ð12Þ

where we used the fact W0 ∼ z2 winds twice as z encircles
the critical points. This proves the quantization of the HTA
in the supersymmetric p ¼ 1 limit.
For the p ≠ 1 nonsupersymmetric deformation of the

theory, the perturbative ground-state energy no longer
vanishes, but the energy spectrum must still be unambigu-
ous. In that case, we show in [15] that the ambiguity
inherent to the Borel resummation of perturbation theory
cancels exactly the twofold ambiguous complex bion
amplitude, as an explicit illustration of resurgence.
Periodic potential.—Now consider the superpotential

WðxÞ ¼ 4 cosðx=2Þ. In this system supersymmetry is
unbroken [25]. There are two degenerate ground states,
one bosonic and one fermionic, both with vanishing
ground-state energy. After the fermion is integrated out
we obtain the bosonic potential

V�ðxÞ ¼ 2sin2ðx=2Þ � pg
2
cosðx=2Þ: ð13Þ

The inverted potential, Fig. 3, has global maxima at x ¼
4nπ and local maxima at x ¼ ð4nþ 2Þπ. (The potential has
period 4π). There is an exact real bounce solution starting at
the local maximum and bouncing from a real turning point,
but again this is not directly relevant for ground-state
properties. Now we find two types of exact bion solutions,
shown in Fig. 3. The first is a real bion, connecting
neighboring global maxima, say, at x ¼ 0 and x ¼ 4π. It
has the form of an instanton-instanton solution, and as such
has no analogue in the double-well case. There is also a

complex bion solution that starts from a global maximum
of the inverted potential and is reflected from a complex
turning point, with a real part near the local maximum. This
solution can be found directly or by an analytic continu-
ation from the real bounce, p → peiθ, and leads to an exact
finite action complex saddle,

zcbðtÞ ¼ 2π � 4ðarctan e−ωcbðt−t0Þ þ arctan eωcbðtþt0ÞÞ; ð14Þ

where ωcb ¼
ffiffiffiffiffiffiffiffiffiffiffi
V″ð0Þ

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðpg=8Þp
. The complex para-

meter t0 ≃ ð1=2ωcbÞ ln ð−32=pgÞ, where Re½2t0� is the
complex bion size. The action is

Scb ≃
�
16

g
þ p ln

32

pg
þ � � �

�
� ipπ: ð15Þ

The complex bion has the form of a complex instanton–
anti-instanton molecule. An interesting new feature of this
solution is that it is singular at t ¼ �t0, even though the
action is finite. Physically this is because the real part of the
holomorphic potential has ridges along the y direction, and
the holomorphic equations of motion allow the particle to
roll up [notice relative signs in (2)] along one ridge and then
jump to the next ridge at infinity before rolling back again.
The analytic continuation in θ smooths this singularity,

and the solution is correspondingly multivalued as
θ → π � ϵ; see Fig. 4. As θ → π the real part of zcbðtÞ
has a discontinuity, and the imaginary part diverges. The
action is finite, because the divergence in the action integral
due to the singular behavior in RezðtÞ and ImzðtÞ cancel.

FIG. 3. Real and complex solutions in the quantum modified
inverted sine-Gordon potential. The inverted potential (on the real
axis) is shown in black, the real bounce and associated critical and
turning points are shown in red, the pair of complex bions and
associated turning as well as critical points are blue, and the real
bion is shown in green. In order to smoothen the (singular)
complex bion, the solution is plotted at θ ¼ 0.95π. The singular
limit is shown as the dashed line. Note that the vacuum properties
are governed by the real and complex bion solutions.

–t0 t00
0

π

Re[z]

2π

0

3

Im[z]

6

t

θ =0π

–t0 t00
0

π

Re[z]

2π

0

3

Im[z]

6

t

θ =0.99π

FIG. 4. Complex solutions in the quantummodified sine-Gordon
potential withpg ¼ 2 × 10−5. θ ¼ 0 corresponds to the real bounce
solution. At θ ¼ π−, the real bounce turns into a complex bion. The
characteristic size of the solution is Re½2t0� ≈ lnð32=pgÞ.
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Figure 5 shows the real and imaginary parts of the action as
a function of the θ parameter.
In the semiclassical limit the ground state can be

described as a dilute gas of complex and real bions, with
energy

Egs ∼ −e−Scb − e−Srb ¼ −e�iπe−2Srb − e−2Srb ¼ 0; ð16Þ

consistent with the requirement of supersymmetry. The
noninclusion of the multivalued saddle would result in a
negative ground-state energy and a conflict with the
constraints of supersymmetry algebra. This proves that
in order for the semiclassical analysis to be consistent with
the supersymmetry algebra, it is essential to include a
singular, multivalued complex bion solution. This resolves
a significant puzzle raised in [4].
Conclusions.—We have presented two examples that

demonstrate the need to include complex, and even singular
and multivalued, saddle-point solutions of the path integral.
We obtained exact finite action saddle points of the
complexified path integral in supersymmetric quantum
mechanics with a double-well and sine-Gordon potential.
In both cases these new complex bion configurations are
essential in order to obtain agreement with known results
and the requirements of supersymmetry. This phenomenon
is not restricted to quantum mechanics: analogous effects
occur in several field theories, such as sigma models with
fermions [2,27–30] SUSY gluodynamics and QCD(adj) on
R3 × S1, N ¼ 1 [16,31,32], SUð2Þ SUSY QCD with one
quark flavor [22,33], and three-dimensional SUSY N ¼ 2
gauge theory [23]. Clearly, it is of interest to study these
field theories, and ultimately QCD, using complexified
path integrals.
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