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We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron
recoils from dark matter—electron scattering. Such devices could detect dark matter as light as the warm
dark-matter limit, my = 1 keV. We compute the rate of dark-matter scattering off of free electrons in a
(superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark
matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such

detectors with a moderate size exposure.
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Introduction.—The search for the identity of dark matter
(DM) is in an exciting and rapidly developing era. Theories
of weakly interacting massive particles (WIMPs) for DM,
being predictive and testable, have been the primary focus
of both theory and experiment for the last thirty years.
Strong constraints from direct-detection experiments, such
as XenonlO0O0 [1], LUX [2], and SuperCDMS [3], along
with the absence of new physics signals from the LHC,
have, however, been painting such models as increasingly
constrained and tuned. Further, because the energy thresh-
old of direct-detection experiments searching for WIMPs is
typically 1-10 keV, these experiments lose sensitivity to
DM particles with mass below 10 GeV. At the same
time, DM candidates with low masses are theoretically
well motivated: asymmetric dark matter [4,5] and strongly
interacting massive particles [6] are examples in which
the natural mass scale of the DM sits beneath the ~10 GeV
scale.

A new frontier for massive DM thus opens for
1 keV < my <10 GeV, with the lower bound set approx-
imately by warm dark-matter constraints, e.g., from phase-
space packing [7,8] or the Lyman-a forest [9]. For elastic
scattering processes, the deposited energy is Ep = g*/
(2m, ), where g ~ u,vy is the momentum transfer with
vy ~ 1073 the incoming DM velocity, y, is the reduced
mass of the system, and m, y is the mass of the target
electron or nucleus N. Thus for 100-MeV DM, an eV of
energy is deposited for scattering off a nucleus. Inelastic
processes, such as electron ionization or excitation above a
band gap, may occur when the DM kinetic energy exceeds
the binding energy. Utilizing a semiconducting crystal such
as germanium, with a band gap of 0.7 eV, implies potential
sensitivity to DM as light as O(MeV) [10,11]. SuperCDMS
is already working to lower its threshold to 300 eV [3],
constraining 1-GeV mass DM.

To go well below this, as low as the warm DM limit at
O(keV), requires a different kind of technology; in this
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case one must be able to access electron recoil energies as
low as O(meV). The purpose of this Letter is to investigate
a proof-of-principle experiment to search for DM down to
the warm DM limit. Devices utilizing superconductors, we
will show, are ideal for this purpose, as they can be sensitive
to extremely small energy depositions. In fact, in cold
metals, the limit on the sensitivity of the experiment to low-
energy DM recoils is set by the ability to control the noise
rather than by an inherent energy gap in the detector.
The targets we discuss are metals, with the DM interacting
with free electrons in the Fermi sea. The DM scattering
rate is limited by Pauli blocking for electrons locked deep
in the sea, yielding a suppression factor of order the energy
transfer over the Fermi energy; the suppression is, e.g., of
order ~10* for a DM-electron scattering with meV energy
deposition in a typical metal such as aluminum. As we
will show, DM models satisfying all astrophysical and
terrestrial constraints are detectable despite the Pauli
blocking effect, extending the conceptual reach of the
detection method down to DM masses of O(keV).
Detection with superconductors.—The challenge in
designing a detector to observe DM with low-energy
deposits is to achieve a large target mass while keeping
noise low. Detection of small energy depositions is by now
well established; superconductors, with a meV supercon-
ducting gap, have sensitivity to energies at this scale.
Transition edge sensors (TESs) and microwave Kkinetic
inductance devices (MKIDs) have been utilized to detect
microwaves and x rays with sub-meV to keV energies in
astrophysical applications. For example, TESs with sensi-
tivity to energy depositions not very far from our range of
interest already exist: for example, Refs. [12-14] have
demonstrated noise equivalent power in the range
~10719-10720 W/+/Hz. This translates to a sensitivity of
~50-300 meV of energy over a read-out time of ~10 ms.
Thus, current technology could already start probing new
regions of parameter space, though not yet at the O(meV)
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level of sensitivity required for probing down to keV dark
matter. Since the energy resolution scales with VT3V, with
T the heat-bath temperature and V the TES volume, the
required improvement could be made by lowering 7 and
further decreasing the heat capacitance of the TES by
reducing the volume. (For example, a factor of 4 in volume
and of ~10 in temperature down to ~10 mK compared to
the device of Ref. [12] would suffice.)

The TES and MKID, however, have very low masses—a
MKID is typically a nanogram in weight, while TESs are
approximately 50 microns on a side and a fraction of a
micron thick. As a result, they do not make good detectors
themselves. Their masses cannot simply be increased, since
this would decrease their sensitivity to small deposits of
energy. An alternative is then to use the TES or the MKID
merely as heat sensors that register small deposits of energy
from a much larger target mass, i.e., an “absorber”.

For the absorber, we choose a superconductor; a super-
conductor features an energy gap that controls the thermal
noise in the absorber. As a DM particle hits a free electron
in the Fermi sea of the absorber, the recoiling electron will
deposit an O(1) fraction of its energy into breaking Cooper
pairs, creating quasiparticles in the superconductor. These
quasiparticles randomly walk in the superconductor until
the energy stored in them can be collected. Two possibil-
ities for the collection are that the quasiparticles (i) recom-
bine and create an athermal phonon or (ii) are absorbed on
collection fins on the surface of the absorber.

In the former case, the athermal phonon may break
Cooper pairs in the MKID, leading to an observable change
in the kinetic inductance. In the latter case, the quasipar-
ticles may reach a collection fin on the surface of the
absorber. The fins should have a lower gap than the
absorber, both to control noise and to facilitate collection
of energy into the fins. The collection fins are connected to
the TES that registers the heat. The quasiparticle lifetimes
are sufficiently long and their velocities sufficiently high
that even if the collection fin area on the absorber is small,
the quasiparticles ricochet sufficiently many times that they
are very efficiently channeled from the absorber into the
collection fins and on to the TES. Aluminum is an example
of an ultrapure metal that makes for a good absorber: with
quasiparticle lifetimes of order a millisecond [15] and
velocities of order the Fermi velocity v, ~ 1072¢, its gap
of ~0.3 meV pairs well with gapless gold collection fins.
We note that the scattering length in the absorber sets the
upper bound on its unit size—of order ~5 mm in ultrapure
aluminum—such that many small absorbers must be multi-
plexed for large exposure.

In either case, the MKID or the TES is acting as a
calorimeter for the energy deposited in the absorber. The
underlying design principle sketched here is of concen-
tration: one seeks to store the deposited energy nonther-
mally, whether through quasiparticles or athermal phonons,
and then concentrate them through a collection mechanism

onto the MKID or TES. This process must happen fairly
rapidly, on the time scale of a millisecond.

Our purpose here is not to advocate for a particular
experimental design, but rather simply to outline how,
through improvements to existing technology, sensitivity to
extremely light DM utilizing superconductors may be
feasible. (Other techniques, such as the use of superfluid
helium [16,17], hold promise as well.) The remainder of
this Letter focuses on the reach of such an experiment into
the parameter space of light dark matter.

Rates and backgrounds.—Detection via TESs (or
MKIDs) operates by DM scattering off of free electrons
in a metal. In a superconductor, the free electrons are bound
into Cooper pairs, which typically have ~meV (or less)
binding energy. Once the energy in the scattering exceeds
this superconducting gap, however, the scattering rate is
computed by the interaction with free electrons, multiplied
by a coherence factor. This factor is O(1) for energies just
above threshold, and goes to unity for energies above the
gap, see, e.g., Ref. [18]. In the setups we consider, the gap
is below the noise-limited energy resolution, and the
coherence factor can be neglected. The electrons are then
described by a Fermi-Dirac distribution at low temperature.
The typical Fermi energy Ep of these electrons is
p%/(2m,) ~ 10 eV, with pp ~3 keV in a typical metal
such as aluminum. Scattering with a target electron buried
in the Fermi sea can break the Cooper pair if the energy
transferred in the scattering is enough to pull an electron out
of the sea and above the gap. As a result, with kinetic
energy of the incoming DM approximately myv% ~ meV —
keV for keV to GeV DM, Pauli blocking is important for
the DM scattering rate. We follow the discussion in [19] to
compute the rate correctly, factoring in the Pauli blocking
effect. We denote the 4-momentum of DM initial and final
states by P; and P;, the initial and final states of the
electron by P, and P,, and the momentum transfer
q = (Ep,q). The scattering rate can be estimated via

[ &ps (MP)
v = [ GBS ).
— @ &*py 454 _p _
S(EDv QD =2 (271_)3 (2”)3 (27T> o (Pl +P2 P3 P4)
X f2(Ex)[1 = f4(E4)], (1)

where Ej, is the deposited energy, (|M|?) is the squared
scattering matrix element summed and averaged over spin,
and f;(E;) = {1 + exp[(E; — u;)/T]}~" is the Fermi-Dirac
distribution of the electrons at temperature 7. S(Ep, |q])
characterizes the Pauli blocking effects, and in the limit of
T — 0, S(Ep.|q|) reduces to a simple Heaviside theta
function, with amplitude m2E,,/(x|q|). We perform the
integration numerically in order to capture the entire
kinematic range properly. The total rate (per unit mass
per unit time) is then
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Here p is the mass density of the detector material, and
px = 0.3 GeV/cm® the DM mass density. We take the
velocity distribution of the DM fyp(vy) to be a modified
Maxwell Boltzmann with rms velocity v, = 220 km/s,
and cutoff at the escape velocity v.,. = 500 km/s. Since
the typical Fermi velocity of a metal is
O(10%) km/s > vey, Vg = vp. The Pauli blocking effect
provides a suppression factor of order E,/Ef, which we
confirm numerically. An irreducible background is
expected to come from electron-neutrino scattering, which,
due to the low-energy deposition in the detector, will be
dominated by pp neutrinos [20,21]. We find that the solar
neutrino background is many orders of magnitude below
the signals we consider, and is, hence, omitted from further
discussion. We have also checked that backgrounds from
Compton scatters (at levels already achieved in an experi-
ment such as CDMS) are not significant.

In what follows we assume that the DM X interacts with
electrons via exchange of a mediator ¢. The generalization
of light DM models will be addressed in future work [22];
we seek only to demonstrate proof of principle here. The
scattering cross section between, e.g., Dirac DM and free
electrons is given by Gyer = 167, axu’y/ (mi + q%)?,
where @; = ¢?/(4x), g; is the coupling of ¢ to i with
i =e, X, u.x the reduced mass of the electron-DM system,
and ¢ the momentum transfer in the process. This cross
section is related to the matrix element in Eq. (1) via
Oscatter — <|M|2>/(167[E1E2E3E4)/‘g)(' We  define two
related reference cross sections o6pp, corresponding to
the light and heavy mediator regimes,

Vp =

light _ 16maay _
Opp — 4 Hexs Qret = Hex VX
ref

167a,a

~hi e X

Fheawy —i Wiy, (3)
¢

where vy = 1073. The transition between these regimes is
set by how large the mediator mass is in comparison to the
momentum transfer. The reference momentum transfer g,.¢
above is chosen for convenience as a typical momentum
exchange. Note, however, that for a light mediator, the
direct-detection cross section is determined by the minimal
momentum transfer in the process, which is controlled by
the energy threshold of the detector.

To establish a notion of the expected number of events,
in Fig. 1 we present the differential rate per kg yr as a
function of deposited energy for several benchmark points
described in the next section. When the mediator is
effectively massless—namely, lighter than the momentum
transfer in the scattering—the rate is peaked at energies
near the detector threshold due to the 1/¢* enhancement of
the cross section. In contrast, for massive mediators, the
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FIG. 1. Signal rates per kg yr, for several benchmark points

of  (my.my.ax.g,) = (10 ueV,10 keV,5 x 107'4,3 x 1079)
(solid green), (10 ueV, 100 MeV, 5 x 1078, 3 x 10~'?) (dashed
green), (1 MeV,10 keV,0.1, 3 x107°) (solid red), and
(100 MeV,100 MeV,0.1, 3 x 1075) (dashed blue). We use the
Fermi energy of aluminum, E = 11.7 eV.

rate is peaked at higher recoil energies. The reason for the
latter behavior is that as the recoil energy increases, more
electrons can be pulled from deeper in the Fermi sea,
resulting in an increased rate. The mass of the mediator
determines the scattering distribution in phase space, but
does not control the size of the available phase space. A
cutoff in the differential rate is evident for both light and
heavy mediators, and depends on the DM mass. For heavier
DM (dashed curves), the maximum energy deposition is
determined by EB™ = Im,[(vF + 20es)? — v3]. When the
DM is lighter (solid curves), the cutoff is determined by the
kinetic energy of the DM, namely, by u,yv2./2.

Results.—In Fig. 2 we show the 95% expected sensitivity
reach after one kg yr exposure, corresponding to the cross
section required to obtain 3.6 signal events [24]. The left
(right) panel corresponds to the light (heavy) mediator

. ~light  ~heavy :

regime, where we plot oy (opp ) as a function of my.
The black solid (dashed) curve in both panels corresponds
to a sensitivity to measured energies between 1 meV-1 eV
(10 meV-10 eV). For light mediators, the scattering rate is
sensitive to the lowest energy depositions, resulting in a
large improvement in reach when the detector threshold is
decreased. For massive mediators, the differential rate
peaks towards larger energies, though with a lower thresh-
old there is more sensitivity to lighter particles. (Note that
the inclusion of the coherence factor is expected to have at
most an O(1) effect [or be completely negligible] for a
1 meV [or 10 meV] threshold.)

For a sense of the size of the cross sections in Eq. (3), we
divide our discussion into light mediator and heavy
mediator regimes. We begin with a light mediator ¢, which
for illustration purposes we take to be a scalar. In the left
panel of Fig. 2 we plot the direct-detection cross section
5%%“ [Eq. (3)] for several benchmark points labeled I-1II,
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FIG. 2. Left: Direct-detection cross section for light dark-matter scattering off electrons, for several benchmarks of light mediators.
These are I: ay = 107%, @, = 1073, II: ay = a, = 1071; and III: ay = 10~", a, = 10~'3. These depicted parameters obey bounds
from self-interactions and decoupling at recombination for m, < eV, though stellar emission may place strong constraints for scalar
mediators; see text for details. Right: Direct-detection cross section between light dark-matter and electrons, for several benchmarks of
heavy mediators. These are A: my =1MeV, g, = 10 %¢, ax =0.1;B:my, =10 MeV, g, = 10 %, ax =0.1;and C: m;, = 100 MeV,
g. = 10™%e, ay = 0.1. These depicted parameters obey all terrestrial and astrophysical constraints, though sub-MeV DM interacting
with standard model (SM) through a massive mediator may be strongly constrained by big bang nucleosynthesis (BBN); see text for
details. The Xenon10 electron-ionization data bounds [23] are plotted in thin dashed gray. In both panels, the black solid (dashed) curve
depicts the sensitivity reach of the proposed superconducting detectors, for a detector sensitivity to recoil energies between 1 meV-1 eV
(10 meV-10 eV), with a kg yr of exposure. For comparison, the gray dot-dashed curve depicts the expected sensitivity utilizing electron

ionization in a germanium target as obtained in Ref. [10].

shown in solid-colored curves. As is evident, large direct-
detection cross sections can be obtained even for extremely
small couplings due to the large enhancement factor in
Eq. (3), which scales like 4 powers of the inverse of the
momentum transfer in the detection process when the
mediator is light. The presented benchmark points all obey
DM self-interaction bounds [25-29] and also ensure that
the DM remains out of kinetic equilibrium with the baryons
up through the time of recombination [30] for m, < eV.
Stellar constraints are model dependent (for example,
whether a scalar or vector mediator is used), and hence
have not been factored in here; we note that for a kinetically
mixed hidden photon, the strength of stellar constraints is
lifted for the couplings shown in the plot since the
combination ~gxg, or myg, is then bounded [31,32] rather
than just g,. Also note that the reach curves do not include
any medium-dependent mediator mass, as this is model
dependent. For example, in a metal, a kinetically mixed
vector mediator would experience a large in-medium mass;
such a mass becomes small in an insulating superfluid
absorber like helium-3. We detail the medium and model
dependence in a longer paper [22].

Moving to heavy mediators, we focus on m, = MeV. A
plethora of constraints exists in the literature for this mass
range; see, e.g., [33-36] in the context of kinetically mixed
hidden photons. In the right panel of Fig. 2, we select
several benchmark points, labeled A-C, that survive all
terrestrial (e.g., beam dump) and stellar cooling constraints,
and plot the resulting direct-detection cross section of
Eq. (3), 553 Large couplings to electrons g, = 107

are possible despite stellar constraints due to trapping

effects, and beam dump constraints may be evaded by
decaying to additional particles in the dark sector. These
statements hold regardless of the vector or scalar nature of
the heavy mediator. However, for values of ay and g, as
large as these benchmark points, DM and/or the mediator
will be brought into thermal equilibrium with the SM
plasma. The chief constraint on these models is thus BBN
and Planck limits on the number of relativistic species in
equilibrium (see, e.g., [37]). The Planck constraints can be
evaded; for instance, coupling to y/e through the time that
the DM becomes nonrelativistic will act to reduce the
effective number of neutrinos at the cosmic microwave
background epoch. On the other hand, during BBN, the
helium fraction constrains the Hubble parameter, which is
sensitive to all thermalized degrees of freedom. DM must
then be either a real scalar or heavier than a few hundred
keV in such simple models [37]. It follows that part of the
depicted curves of benchmarks A—C in the low-mass region
may not be viable; a detailed study of the viable parameter
space is underway [22]. For completeness, we show the
Xenonl0 electron-ionization bounds [23] in the thin gray
dashed curve. (The Xenon10 bounds on light mediators are
not depicted in the left panel of Fig. 2 as they are orders of
magnitude weaker than the parameter space shown.)

For comparison, we show the expected sensitivity using
electron-ionization techniques with a germanium target as
obtained in Ref. [10], translating their result into 6pp of
Eq. (3). These results are depicted by the dot-dashed gray
curves in Fig. 2 for both the light (left panel) and heavy
(right panel) mediator cases. For heavy mediators and my
larger than a few hundred keV, our detection method is less
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sensitive than the projected one using germanium, while for
lighter my, where electron-ionization methods lose sensi-
tivity, the superconducting devices win. (Indeed, this
comparison between the detection methods is our main
aim in presenting the right panel of Fig. 2.) In contrast, light
mediators highlight the strength of our proposed detectors.
For DM masses above several hundred keV, superconduct-
ing detectors can outperform electron ionization techniques
by several orders of magnitude. For dark matter below the
MeV scale, the proposed superconducting detectors are
uniquely staged to detect superlight sub-MeV viable
models of dark matter.

In summary, we have proposed a new class of detectors
that utilize superconductors to detect electron recoils from
thermal DM as light as a keV. Given some improvement
over current technology, such detectors may have suffi-
ciently low noise rates to be sensitive to the required energy
scale of meV electron recoils. We have computed the DM
scattering rates, taking into account Pauli blocking, and
have shown that viable models may be detected. We hope
this proof of concept encourages the experimental com-
munity to pursue research and development towards the
feasibility of such devices, probing detection of DM down
to the keV scale. We leave for future work the extended
study of broader classes of DM models that may be
detectable with these devices.
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