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This work provides a thorough study of Lévy, or heavy-tailed, random matrices (LMs). By analyzing the
self-consistent equation on the probability distribution of the diagonal elements of the resolvent we
establish the equation determining the localization transition and obtain the phase diagram. Using
arguments based on supersymmetric field theory and Dyson Brownian motion we show that the eigenvalue
statistics is the same one as of the Gaussian orthogonal ensemble in the whole delocalized phase and is
Poisson-like in the localized phase. Our numerics confirm these findings, valid in the limit of infinitely
large LMs, but also reveal that the characteristic scale governing finite size effects diverges much faster than
a power law approaching the transition and is already very large far from it. This leads to a very wide
crossover region in which the system looks as if it were in a mixed phase. Our results, together with the
ones obtained previously, now provide a complete theory of Lévy matrices.
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Since the well-known pioneering applications of
Gaussian random matrices to nuclear spectra, random
matrix theory (RMT) has found successful applications
in many areas of physics [1] and also in other research
fields such as wireless communications [2], financial risk
[3], and biology [4]. The reason for such remarkable
versatility is that RMT provides universal results which
are independent of the specific probability distribution of
the random entries: only a few features that determine the
universality class matter. The most commonly studied RMs
belong to the Gaussian ensembles [1]. They have been
analyzed in great depth taking advantage of the symmetry
under the orthogonal (or unitary/symplectic) group of the
probability distribution. As an example of universality,
N × N real symmetric RMs, although they belong to the
Gaussian orthogonal ensemble (GOE) only if the elements
are Gaussian variables, display a GOE-like level statistics
also when the distribution of the elements is not Gaussian,
provided that it decreases fast enough to infinity [1,5,6].
There exists, however, a large set of matrices that fall out

of the universality classes based on the Gaussian paradigm
[7]. These are obtained when the entries are heavy-tailed
i.i.d. random variables (i.e., with infinite variance). The
reference case for this different universality class corre-
sponds to entries that are Lévy distributed. This is the
natural generalization of the Gaussian case since the
limiting distribution of the sum of a large number of
heavy-tailed i.i.d. random variables is indeed a Lévy
distribution, as is the Gaussian distribution for nonheavy
tailed random variables. Understanding the statistical spec-
tral properties of these, so called, Lévy matrices (LMs) is an
exciting problem from the mathematical and the physical
sides [7–14]. They represent a new (and very broad)

universality class, with different and somehow unexpected
properties with respect to the Gaussian case. Actually, a
huge variety of distributions in physics and in other
disciplines exhibit power-law behavior. Accordingly, LMs
appear in several contexts: in models of spin glasses with
dipolar RKKY interactions [15], in disordered electronic
systems [16], in portfolio optimization [17], and in the study
of correlations in big data sets [18], just to cite a few.
Contrary to the Gaussian case, the theory of random

LMs is not yet well established. LMs were introduced in
the pioneering work of Ref. [7] and further studied in
Refs. [8–14]. By now, the behavior of their density of states
is well understood (even rigorously) [7–10]. Instead, on
finer observables, such as level and eigenfunction statistics,
there are scarcer and even conflicting results. This is
probably due to the fact that the behavior of LMs is richer,
and hence more difficult to understand, than the one of
GOE matrices. For instance, a mobility edge separating
high energy localized states from low energy extended
states appears within their spectrum [7]. It was also argued
that they display a new intermediate mixed phase, charac-
terized by a nonuniversal level statistics. Although some
aspects of the scenario put forward in Ref. [7] are in
contradiction with recent rigorous results [13], such mixed
phase could indeed exist and actually be related to the one
recently observed in the Anderson model on the Bethe
lattice [19,20]. It may be the simplest case of the non-
ergodic delocalized phase advocated for quantum many
body disordered systems in Ref. [21].
In the following we focus on N × N real symmetric

matricesH with entries hij ¼ hji distributed independently
according to a law, PðhijÞ ¼ N1=μfðN1=μhijÞ, characterized
by heavy tails:
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PðhijÞ≃ μ

2Njhijj1þμ ; jhijj → ∞; μ < 2:

The specific form of fðxÞ does not matter. For concreteness
in numerical applications we will focus on a Student
distribution with exponent 1þ μ and symmetric entries,
fðxÞ ¼ fð−xÞ. The scaling of the entries withN is such that
almost all eigenvalues are Oð1Þ for N → ∞.
The first issue we address is determining the localization-

delocalization transition line E⋆ðμÞ in the E-μ plane. In
order to do so, we focus on the statistics of the diagonal
elements of the resolvent matrix Ĝ ¼ ½ðE − iηÞI −H�−1,
which allows one to compute in the η → 0þ limit spectral
properties of H such as the global density of states ρðEÞ ¼
ð1=NÞPN

n¼1 δðE − λnÞ ¼ limη→0þð1=NπÞPN
i¼1 ℑGii and

the average inverse participation ratio (IPR) hϒ2;ni ¼
hPN

i¼1 jhijnij4i ¼ limη→0þð1=NÞPN
i¼1 ηjGiij2. As shown

in Refs. [7–10], the probability distribution QðGÞ of a
given Gii is obtained in the large-N limit from the equation

G−1
ii ¼d E − iη −

XN
j¼1

h2ijGjj; ð1Þ

where all correlations between the terms on the rhs can be

neglected and ¼d denotes the equality in distribution
between random variables. This leads to a self-consistent
equation on QðGÞ, whose analysis yields the results on the
density of states obtained in Refs. [7,10]: For μ < 2, ρðEÞ is
a μ-dependent symmetric distribution with support on the
whole real axis and fat tails with exponent 1þ μ (the
semicircle law is recovered for μ > 2 only). There are
several complementary ways to obtain the localization
transition from the statistics of the Giis. We have followed
the one more likely to receive a rigorous treatment, as it was
shown for the Anderson transition on the Bethe lattice [22].
It consists in studying the stability of the localized phase,
checking whether adding a small imaginary part toGii is an
unstable perturbation [23]. Such stability is governed by an
eigenvalue equation for the same integral operator found in
Ref. [7], whose analysis can be considerably simplified, as
shown in Ref. [24], and boils down to the following closed
equation for the mobility edge E⋆ðμÞ, which is one of the
main results of this work:

K2
μðs2μ − s21=2ÞjlðE⋆Þj2 − 2sμKμℜlðE⋆Þ þ 1 ¼ 0; ð2Þ

where Kμ ¼ μΓð1=2 − μ=2Þ2=2, sμ ¼ sinðπμ=2Þ and

lðEÞ ¼ Rþ∞
0 kμ−1L̂CðEÞ;βðEÞ

μ=2 ðkÞeikEdk=π. The function

L̂CðEÞ;βðEÞ
μ=2 ðkÞ is the Fourier transform of the probability

distribution of the real part of the self-energy, that previous
works have shown to be a Lévy stable distribution with
exponent 1þ μ=2 and parameters CðEÞ and βðEÞ deter-
mined self-consistently [7,8,10]. This equation has a

solution for μ ∈ ð0; 1Þ only. For μ → 1 we find that
E⋆ðμÞ diverges as ð1 − μÞ−1. In Fig. 1 we show the
numerical solution of Eq. (2) for several values of μ (we
only consider E > 0 since the spectral properties are
symmetric around zero). This quantitative phase diagram
is in agreement with the sketch of Ref. [7] and the numerics
of Ref. [9] (except for μ > 1 where the results were likely
inaccurate due to the very large values of E that had to be
explored).
We now address more subtle issues related to the level

and eigenfunction statistics. We present first, two analytical
arguments which show that the statistics is a GOE in the
whole delocalized phase and Poisson-like in the localized
phase for N → ∞. The former is based on the super-
symmetric zero-dimensional field theory introduced for
random GOE matrices [31]. Since we follow closely the
techniques developed in Refs. [32,33] we just discuss the
main steps and refer to Ref. [24] and a longer paper [34]
for more details. The starting point is the field theory
Z ¼ R Q

idΦieS½Φi�, with the action

S ¼ i
2

�X
l;m

Φ†
lLðEδlm − hlmÞΦm þ

X
l

Φ†
lΦl

rþ i0þ

N

�
:

The field Φi is a eight-component super-vector ðΦð1Þ
i ;

Φð2Þ
i Þ ¼ ðSai ; Sbi ; χi; χ�i ; Pa

i ; P
b
i ; ηi; η

�
i Þ, where each of the

four components Φð1;2Þ
i of the supervectors Φð1;2Þ is formed

by two real and two Grassman variables. The matrix L is
diagonal with elements ð1; 1; 1; 1;−1;−1;−1;−1Þ. The
level statistics, in particular the density of states and the
correlation between two levels at distance r=2N, can be
obtained from correlation functions of the fields [31].
Averaging over the matrix elements and introducing the
function ρðΦÞ ¼ ð1=NÞPiδðΦ − ΦiÞ one can rewrite Z asR
DρðΦÞeS½ρ� with the action reading

0 0.5 1 1.5 2
µ

0

5
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15
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GOE
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FIG. 1. Phase diagram of LMs in the μ-E plane.
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S ¼ i
2
NE

Z
dΦρðΦÞΦ†LΦþ i

2
ðrþ i0þÞ

Z
dΦρðΦÞΦ†Φ

− N
Z

dΦρðΦÞ log ρðΦÞ

þ i
2
N
Z

dΦdΨρðΦÞCðΦ†LΨÞρðΨÞ;

where CðyÞ ¼ μ
R ðdx=2jxj1þμÞ½expð−ixyÞ − 1�. Since the

second term is subleading compared to the other three that
are OðNÞ, one can neglect it at first and perform a saddle
point. The solution of the corresponding equation reads

ρðΦÞ ¼
Z

dΣRðΣÞ exp
�
i
2
Φ†LΦðE −ℜΣÞ þ 1

2
Φ†ΦℑΣ

�
;

where, as it can be shown in full generality [24,32], RðΣÞ is
the probability distribution of the local self-energy, which
coincides with the complex Lévy stable law rigorously
proven in Ref. [10] (see Ref. [24]). Note that the saddle
point equation is invariant under the symmetry Φ → T Φ
where the super matrix T verifies the equation T †LT ¼ 1.
Thus given a solution ρðΦÞ, ρT ðΦÞ ¼ ρðT ΦÞ is also a
solution. The localization transition corresponds to the
breaking of this symmetry [31,33]: in the localized phase
the typical value of the imaginary part of the self-energy is
zero, whereas it is finite in the delocalized phase. In
consequence, in the former case ρðΦÞ is a function of
Φ†LΦ only, invariant under the symmetry generated by T ,
whereas in the latter it depends also on Φ†Φ. Since this
dependence breaks the symmetry there is a manifold of
solutions ρT ðΦÞ. It is the integration over this manifold that
leads to GOE statistics for the level correlations. The
derivation is identical to the one presented in Ref. [33]
since the only term in the action that depends on T , i.e.,
that breaks the symmetry, is the r one as it happens for
Erdös-Rényi graphs [35] and GOE RMs [31]. In the
localized phase, the saddle point solution is instead
unique. Therefore no integration over T has to be per-
formed and this leads to uncorrelated levels, i.e., Poisson
statistics [33].
Let us now turn to the other analytical argument, which

is very straightforward but limited to μ > 1 only. Taking
inspiration from the recent mathematical breakthrough on
RMT [5], we slightly modify the distribution PðhijÞ into
ð1 − ϵÞPðhijÞ þ ϵN1=μWðN1=μhijÞ where WðxÞ is a
Gaussian distribution with unit variance. This is equivalent
to modifying H into Hϵ ¼ ð1 − ϵÞHþ ϵW where H is a
LM and W a very small GOE matrix whose elements have
exactly the same scaling with N than the ones of H. Since
this change does not alter the fat tails of the matrix
elements, one naturally expects Hϵ and H to be in the
same universality class for any ϵ < 1 and in particular for
ϵ → 0. The statistics of the modified LM—and, by the
previous argument, ofH—can be obtained using the Dyson

Brownian motion (DBM): Hϵ can be interpreted, in the
basis that diagonalizes H, as a diagonal matrix to which an
infinite number of infinitesimal GOE matrices have been
added. The probability of the eigenvalues ofHϵ is therefore
given by the DBM starting from the eigenvalues of H, and
evolving over a fictive time of the order N−1=μ. Recent
rigorous results [5] guarantee that the DBM has enough
“time” to reach its stationary distribution, which is the GOE
distribution, if N−1=μ ≫ N−1 and the typical level spacing
ofH isOð1=NÞ—a very reasonable assumption that agrees
well with the numerics. This implies that for μ > 1 the level
statistics of the modified LM, and hence of the original LM
too, is indeed GOE-like in the bulk of the spectrum [36]
(see Refs. [24,34] for more details).
We now present several numerical results with the aim of

backing up our previous analytical arguments and also of
studying the behavior of large but finiteLMs. In applications
N is never truly infinite, actually in several cases it can be just
a few thousand. Thus, it is of paramount importance to study
finite size effects and determining the characteristic value of
N abovewhich theN → ∞ limit is recovered.We performed
exact diagonalization of LMs for several system sizes
N ¼ 2n, from n ¼ 8 to n ¼ 15 and averaging over 222−n

realizations of the disorder. We have resolved the energy
spectrum in 64 small intervals ν, centered around the
energies Eν ¼ hλnin∈ν, and analyzed the statistics of eigen-
values and eigenfunctions in each one of them. We have
focused on several observables that display different uni-
versal behaviors in the GOE and Poisson regimes: The first
probe, introduced in Ref. [37], is the ratio of adjacent gaps
rn ¼ minfδn; δnþ1g=maxfδn; δnþ1g where δn ¼ λnþ1 −
λn ≥ 0 denotes the level spacings between neighboring
eigenvalues. It has different universal distributions in the
GOE and Poisson cases encoding, respectively, the repul-
sion or the independence of levels. The second one is the
overlap between eigenvectors corresponding to subsequent
eigenvalues, defined as qn ¼

P
N
i¼1 jhijnijjhijnþ 1ij. Its

typical value qtypν ¼ ehln qnin∈ν allows us to make the differ-
ence between the localized phase, in which subsequent
eigenvectors do not overlap (qtyp ¼ 0), and the delocalized
GOE one in which they do (qtyp ¼ 2=π). Finally, the wave
function support set, recently introduced in Ref. [38], is
defined for an eigenvector n with sites ordered according to

jhijnij > jhiþ 1jnij as the sets of sites i < SðnÞϵ such thatPSðnÞϵ
i¼1 jhijnij2 ≤ 1 − ϵ <

PSðnÞϵ þ1
i¼1 jhijnij2. The scaling of

SðnÞϵ ðNÞ for N → ∞ and ϵ arbitrary small but finite allows
us to discriminate between a localized and extended phase.
The analysis of all these probes clearly shows that for μ > 1
the eigenvalues and eigenvectors statistics is a GOE in the
limit of large N, in agreement with our previous arguments
(and also with the rigorous results on the delocalized nature
of wave functions [13]). As an example we show in the top
panel of Fig. 2 the behavior of the average value of rn for
μ ¼ 1.5. It clearly converges in the limitN → ∞ and for any
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energy E to the value hrniGOE ≃ 0.53 characteristic of GOE
statistics. All other probes show a similar convergence to the
values expected for GOE statistics (see Ref. [24] for the
corresponding plots). This is no longer true for μ < 1, where
the situation ismore involved. In the lower panel of Fig. 2 we
show again the behavior of the average of rn but now for
μ ¼ 0.5. For small and large energies we find the values
hriGOE ≃ 0.53 and hriP ≃ 0.39 corresponding respectively
to GOE and Poisson statistics. Moreover, the curves corre-
sponding to different values ofN seem to cross much before
the localization transition, that our previous analytical results
located at E⋆ ≃ 3.85 for μ ¼ 0.5. If this were representative
of the truly asymptotic large-N behavior then it would
possibly signal the existence of a mixed phase which could
be delocalized but nonergodic, i.e., not displaying GOE
statistics. However, analyzing carefully the data—thanks
to the large number of samples used to average over the
disorder—we find that the crossing point is in fact very
slowlydrifting towardshigher energies asN is increased.The
same behavior is found for all the probes we studied. As an
example, in the inset of Fig. 3 we plot qtypν as a function of the
system size for energies belonging to the crossing region.
This indeed shows that qtyp is a nonmonotonic function ofN.
We can then define a characteristic matrix size,NmðEÞ, such
that forN ≪ NmðEÞ the statistics appears to be intermediate
between Poisson and GOE (see Ref. [24]), whereas for
N ≫ NmðEÞ it tends again toward GOE.
The existence of a crossover size can be understood from

the properties of the distribution QðGÞ. What characterizes
the delocalized phase is that, at any site i, the imaginary part
ofGii receives an infinitesimal contribution from an infinite
number of eigenfunctions. This leads to a typical value of
Gii (defined as ℑGtyp

ii ¼ ehlogℑGiii) which is finite for
N → ∞ and η → 0. Instead, ℑGtyp

ii ¼ 0 in the localized
phase. Approaching the transition from the delocalized

side, ℑGtyp
ii becomes extremely small. Thus, one needs to

take large enough systems in order to realize that it is
different from zero, and hence that the system is in the
delocalized and GOE-like phase. The argument, which is
based on the interpretation of ℑGii as the local density of
states, is as follows. The number of states per unit of energy
close to E is NρðEÞ. This number, multiplied by the typical
value of the local density of states, has to be larger than one
in order to be in a regime representative of the large-N limit.
This defines the crossover scale N0

mðEÞ ∝ 1=(ℑGtyp
ii ρðEÞ).

We have compared numerically lnN0
mðEÞ and lnNmðEÞ

and found that they are indeed proportional (see Ref. [24]
for a plot), thus showing that our argument correctly
captures the origin of the finite size effects. We plot the
crossover scale [actuallyN0

mðEÞ] as a function of E in Fig. 3
for μ ¼ 0.5: it diverges very fast approaching E⋆ðμÞ. A
good fit is provided by an essential singularity. These
results therefore unveil what is the mechanism responsible
for the non-GOE statistics observed for finite LMs in a
wide regime before the localization transition.
In conclusion, we have presented a thorough analysis of

the eigenvalues and eigenvectors statistics of random Lévy
matrices. We have shown that the localization and the level
statistics transitions coincide but also unveil the existence
of a crossover scale which is very large even far from the
transition. Thus, many practical cases are expected to be in
the N ≪ NmðEÞ regime. In consequence, the mixed behav-
ior proposed in Ref. [7] will be often present in practice
even though it is absent in the large-N limit. Our work,
together with the results obtained previously, now provides
a complete theory of LMs.
There are several directions worth pursuing more. It

would be interesting to determine analytically the form of
the divergence of NmðEÞ. On the basis of our numerics and
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in analogy with previous works [31,33,35] we expect
NmðEÞ ∝ ec=ðE⋆−EÞa . Most probably, the emergence of
the crossover scale producing an apparent mixed phase
takes place in several other related situations (e.g.,
Ref. [19]) that are, therefore, to be reanalyzed. Finally,
our results provide a guideline for mathematicians working
on RMT. Thanks to the recent advances in the mathematical
analysis of random matrices [5] and localization phenom-
ena [22] our findings are likely to be rigorously proven in a
not too distant future.
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