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In a quantum network, distant observers sharing physical resources emitted by independent sources can
establish strong correlations, which defy any classical explanation in terms of local variables. We discuss the
characterization of nonlocal correlations in such a situation, when compared to those that can be generated
in networks distributing independent local variables. We present an iterative procedure for constructing Bell
inequalities tailored for networks: starting from a given network, and a corresponding Bell inequality, our
technique provides new Bell inequalities for a more complex network, involving one additional source and
one additional observer. We illustrate the relevance of our method on a variety of networks, demonstrating
significant quantum violations, which could not have been detected using standard Bell inequalities.
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Distant observers performing local measurements on a
shared entangled quantum state can observe strong corre-
lations, which have no equivalent in classical physics. This
phenomenon, termed quantum nonlocality [1,2], is at the
core of quantum theory and represents a key resource for
quantum information processing [3,4].
This remarkable feature is now relatively well understood

in the case of observers sharing entangled states originating
from a single common source, for which a solid theoretical
framework has been established [2], and many classes of
Bell inequalities have been derived; see, e.g., Ref. [5]. The
situation is, however, very different in the case of quantum
networks, which have been far less explored so far. A
quantum network features distant observers, as well as
several independent quantum sources distributing entangled
states to different subsets of observers (see Fig. 1).
Crucially, by performing joint measurements, observers
can correlate distant (and initially fully independent)
quantum systems, hence establishing strong correlations
across the entire network. Characterizing and detecting the
nonlocality of such correlations represents a fundamental
challenge, which is also highly relevant to the implemen-
tation of quantum networks [6] and quantum repeaters [7].
Importantly, the methods of standard Bell locality (where

a single source is considered) are not appropriate for
discussing nonlocality in networks featuring independent
sources. This was demonstrated in a few exploratory works
discussing the simplest networks [8–11]. An illustrative
example is the scenario of entanglement swapping, where
two independent sources distribute entanglement to three
distant observers [see Fig. 2(a)]. Here there exist genuine
quantum correlations which cannot be detected using
standard Bell inequalities, as they admit a local model.
However, the nonlocality of these correlations can be
detected via more powerful nonlinear Bell inequalities.
Notably, these inequalities are derived under the assumption

that the sources are independent[8,9], which represents a
natural extension of Bell’s original idea of “local beables”
[1] to the case of a network. Recently, the framework of
causal inferencewas also shown to be relevant in this context
[12–17]. Nevertheless, it is fair to say that adequatemethods
are still currently lacking for discussing nonlocal correla-
tions in networks beyond the simplest possible cases.
In this work, we present simple and efficient methods for

detecting and characterizing nonlocal correlations in a wide
class of networks. Specifically, we give an iterative pro-
cedure for constructing Bell inequalities tailored for net-
works. Starting from a given network, and a Bell inequality
for it, we then construct inequalities for a more complex
network, involving one additional source and one addi-
tional observer. Importantly, the inequalities we construct
capture the independence of the sources. We illustrate the
relevance of our approach considering a variety of networks
and demonstrate significant violations in quantum theory,
which cannot be detected using standard Bell inequalities.

FIG. 1. We consider networks consisting of distant observers
Aj sharing physical resources emitted from independent sources
Sk, and discuss nonlocality in such networks. In our approach,
starting from a network N (in black) with N sources and M
parties, we define a new network N 0 by adding a new indepen-
dent source SNþ1 connected to a single party AM of N and to a
new party AMþ1 (in blue). We show how Bell inequalities for
so-called N 0-local correlations can be derived starting from Bell
inequalities for N -local correlations.
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We believe that the simplicity and versatility of our method
makes it adequate for starting a systematic exploration of
quantum nonlocality in networks.
Scenario of N -locality.—Consider a network N con-

sisting of N independent sources S1;…;SN sending
physical systems to M parties A1;…;AM (see Fig. 1).
Each party thus holds a number of systems, and performs a
measurement on them (assumed here to be binary).
Specifically, we denote by xj the input received by party
Aj, and by ajxj ¼ �1, its corresponding output.
Our goal is to capture the strength of correlations that can

be established in a network N for different types of
resources. In particular, we want to compare the correla-
tions established in the case of a quantum network (i.e.,
with quantum sources, and with the parties performing
quantum measurements) to those that can arise in local
(hidden) variable models. Importantly, the latter should
feature the same network structure as N , with independent
sources of local variables, and are thus referred to as N -
local models. This represents the natural generalization of
the notions of Bell locality [1,2] (tailored for the case of a
single source), and “bilocality” [8,9] (tailored for the
scenario of entanglement swapping with two independent
sources), to arbitrary networks.
More formally, we associate with each source Si a

random local variable λi, which is sent to all parties
connected to Si in the network N . The crucial assumption
of N -locality is that all λi’s are independent from one
another, that is, ρðλ1;…λNÞ ¼

Q
iρiðλiÞ, for some

(nonnegative and normalized) distributions ρiðλiÞ over

some sets Λi. We denote by ~λAj the list of random variables
λi’s “received” by party Aj. Then the (M-partite) joint
probability distribution Pða1;…; aMjx1;…; xMÞ (where we
have omitted redundant subscripts) isN -local if and only if
it can be decomposed as

Pða1;…; aMjx1;…; xMÞ

¼
Z
Λ1

dλ1ρ1ðλ1Þ…
Z
ΛN

dλNρNðλNÞ

× Pða1jx1; ~λA1Þ…PðaMjxM; ~λAMÞ; ð1Þ

where each Pðajjxj; ~λAjÞ is a valid probability distribution,
which (without loss of generality) can be assumed to be
deterministic. As we focus on binary measurements, it is
convenient to consider correlators, i.e., the expectation
values ha1x1a2x2…aMxMi. In an N -local model, these can be
written as

ha1x1…aMxMi ¼
Z
Λ1

dλ1ρ1ðλ1Þ…
Z
ΛN

dλNρNðλNÞ

× a1x1ð~λA1Þ…aMxMð~λAMÞ; ð2Þ

for some deterministic response functions ajxjð~λAjÞ ¼ �1

of the party’s input xj and of the random variables ~λAj .
Characterizing the set of N -local correlations is a

challenging problem. The main technical difficulty, for
cases beyond that of standard Bell locality, originates from
the independence of the sources, which makes the set
nonconvex. Here we will present a simple and efficient
technique for generating Bell inequalities tailored for the
problem of capturing N -local correlations. Hence, a
violation of such inequalities, which is usually possible
considering quantum networks, certifies that no N -local
model can reproduce the given correlations. Below we state
our main result, which is an iterative procedure for
constructing Bell inequalities for N -local correlations.
We then illustrate the relevance of our method by applying
it to simple networks, and discuss quantum violations.
Main result.—Consider a networkN , and a Bell inequal-

ity tailored for it. FromN , we construct a new networkN 0

by adding one source, SNþ1, linked to just one party of N ,
say AM, and to one new party, AMþ1 (see Fig. 1). The new
party AMþ1 gets an input xMþ1, which we choose to be
binary (xMþ1¼0, 1), and gives a binary output aMþ1

xMþ1 ¼�1.
Given a Bell inequality capturing N -local correlations, we
can now construct a Bell inequality tailored for N 0-local
correlations using the following result:
Theorem 1.—Suppose that the correlators ha1x1 ;…; aMxMi

in any N -local model satisfy a Bell inequality of the form
X

x1;…;xM
βx1;…;xMha1x1 ;…; aMxMi ≤ 1 ð3Þ

FIG. 2. In the main text, we discuss a variety of networks:
(a) the scenario of bilocality, (b) a general chain network
featuring N sources andM ¼ N þ 1 observers, (c) a three-branch
star network, (d) a general star-shaped network with N branches,
and (e) a network featuring a different topology, illustrating the
versatility of our method.
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for some real coefficients βx1;…;xM . Then, N
0-local corre-

lations (for the network N 0 obtained from N as described
above) satisfy the following constraint: either there exists
q ∈�0; 1½ such that for any partition of the set of partyAM’s
inputs into two disjoint subsets XMþ and XM

− , we have

1

q
ΣXþ þ 1

1 − q
ΣX−

≤ 1 ð4Þ

for

ΣX� ¼
X

x1 ;…;xM−1 ;
xM∈XM

�

βx1;…;xM

�
a1x1…aMxM

aMþ1
0 � aMþ1

1

2

�
; ð5Þ

or, ΣX−
¼ 0 and ΣXþ ≤ 1 for all k and all XM

� ; or, ΣXþ ¼ 0

and ΣX−
≤ 1 for all k and all XM

� .
In the present Letter, we abuse the notation and write

q ∈ ½0; 1� to cover all cases; indeed, the particular cases
where ΣX� ¼ 0 can easily be recovered in the limits q → 1

or q → 0. In part A of the Supplemental Material [18] we
provide a more general statement of the above theorem—
which allows one to consider several Bell inequalities at
once and also allows for non-full-correlation terms in these
inequalities—as well as a detailed proof. Interestingly, the
technique used in our proof also provides an original way to
derive the simplest Bell inequality of Clauser-Horne-
Shimony-Holt (CHSH) [22], as discussed in part B of [18].
A remarkable feature of the “Bell inequality” (4) is that it

involves the quantifier “∃q…”. As a consequence, despite its
appearance it actually defines a nonlinear constraint on N 0-
local correlations. One could eliminate the quantifier by
minimizing the left-hand side of Eq. (4) over q; this would
indeed lead to explicitly nonlinear Bell inequalities (see
below and parts C–F of the Supplemental Material [18]).
However, it will be convenient in general to keep these
quantifiers (in a practical test, they could be eliminated later,
by optimizing the parametersq directly for the specific values
of the observed statistics). In fact, Theorem 1 also applies to
an initial Bell inequality forN -local correlations that features
quantifiers itself. Our technique can therefore be used in an
iterativemanner, and allows one to construct Bell inequalities
for a broad class of networks, as we shall see below.
Bilocality.—Let us first apply the above method to the

simplest nontrivial network N consisting of M ¼ 2 parties
A1 andA2 connected to a single source S1, that is, the usual
Bell scenario [1,2]. In that case, N -local (i.e., here, simply
“Bell local”) correlations satisfy the well-known CHSH
inequality [22]:

�
a10 þ a11

2
a20

�
þ
�
a10 − a11

2
a21

�
≤ 1: ð6Þ

The network N 0, obtained by adding an independent
source S2 linked to party A2 and to a new party A3,
corresponds here to the scenario of bilocality [8,9]; see
Fig. 2(a). Applying Theorem 1 starting from the CHSH

inequality and with X2þ ¼ f0g and X 2
− ¼ f1g, we find that

N 0-local (i.e., bilocal) correlations satisfy the inequality

∃q ∈ ½0; 1� such that

1

q

�
a10 þ a11

2
a20

a30 þ a31
2

�

þ 1

1 − q

�
a10 − a11

2
a21

a30 − a31
2

�
≤ 1: ð7Þ

It is still fairly easy, in this first example, to eliminate the
quantifier. As we show in part C of the Supplemental
Material [18], this constraint (when combined with similar
forms obtained from other versions of CHSH) is equivalent
to the (nonlinear) “bilocal inequality” derived previously
in Ref. [9].
Next we discuss the quantum violation of the above

Bell inequality, thus considering the entanglement swap-
ping scenario. Assume that each source Si (i ¼ 1, 2)
emits two particles in the 2-qubit Werner state ϱðviÞ ¼
vijΦþihΦþj þ ð1 − viÞ1=4, with vi ∈ ½0; 1�, jΦþi ¼
ð1= ffiffiffi

2
p Þðj00i þ j11iÞ, and 1=4 the fully mixed state of

two qubits. Moreover, the parties A1 and A3 perform
single qubit projective measurements given by operators
â10 ¼ â30 ¼ ½ðσ̂z þ σ̂xÞ=

ffiffiffi
2

p � (for x1; x3 ¼ 0) or â11 ¼ â31 ¼
½ðσ̂z − σ̂xÞ=

ffiffiffi
2

p � (for x1; x3 ¼ 1); here σ̂z and σ̂x are the Pauli
matrices. Finally, the intermediate party A2 performs
projective two-qubit measurements given by â20 ¼
σ̂z ⊗ σ̂z (for x2 ¼ 0) or â21 ¼ σ̂x ⊗ σ̂x (for x2 ¼ 1).
Defining V ¼ v1v2, one finds

ha1x1a2x2a3x3i ¼ ð−1Þx1x2þx2x3 V
2
; ð8Þ

so that

�
a10 þ a11

2
a20

a30 þ a31
2

�
¼
�
a10 − a11

2
a21

a30 − a31
2

�
¼ V

2
: ð9Þ

Noting that minq∈½0;1�fð1=qÞðV=2Þ þ ½1=ð1 − qÞ�ðV=2Þg ¼
2V, we find that the quantum correlations thus obtained
violate theBell inequality (7)—and, hence, are nonbilocal—
for any V > 1

2
, as already shown in Ref. [8]. Notably, these

quantum correlations are Bell local for any 0 ≤ V ≤ 1 [9]
(see also part G of the SupplementalMaterial [18]), and thus
can never violate any standard Bell inequality.
Chain network.—The above procedure can be iterated

in order to characterize N -local correlations on a one-
dimensional chain network [see Fig. 2(b)]. First, starting
from the previous bilocality network (with 2 sources and 3
parties), we add a new party A4, and a source S3 connected
to A3 and A4. Applying Theorem 1 to the Bell inequality
(7), and choosing X3þ ¼ f0g and X3

− ¼ f1g, we find that
“trilocal” correlations satisfy the inequality

PRL 116, 010403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

010403-3



∃q; r ∈ ½0; 1� such that

1

8

�
1

q
1

r
hða10 þ a11Þa20a30ða40 þ a41Þi

þ 1

q
1

1 − r
hða10 þ a11Þa20a31ða40 − a41Þi

þ 1

1 − q
1

r
hða10 − a11Þa21a30ða40 þ a41Þi

−
1

1 − q
1

1 − r
hða10 − a11Þa21a31ða40 − a41Þi

�
≤ 1: ð10Þ

Note that it is, in principle, possible to write the above
constraint without quantifiers, and end up with a nonlinear
Bell inequality (as in the case of bilocality above). We
discuss this operation in part D of the SupplementalMaterial
[18]. However, in this case the nonlinear form appears to be
extremely cumbersome and of no practical use.
Next, we extend our analysis to chains of arbitrary

lengths, focusing on linear Bell inequalities with quanti-
fiers. By further iterating the argument, we obtain the
following inequality for chains of N independent sources
and M ¼ N þ 1 parties:

∃q2;…; qN ∈ ½0; 1� such that

1

2N

X
x1;…;xNþ1

1

q2x2
…

1

qNxN
ð−1Þx1x2þx2x3þ���þxNxNþ1

× ha1x1…aNþ1
xNþ1i ≤ 1; ð11Þ

with for each j, qj0 ¼ qj and qj1 ¼ 1 − qj.
Let us discuss quantum violations. Consider that each

source Si sends two particles in the Werner state ϱðviÞ;
party A1 measures either â10 ¼ ½ðσ̂z þ σ̂xÞ=

ffiffiffi
2

p � or â11 ¼
½ðσ̂z − σ̂xÞ=

ffiffiffi
2

p �; parties j, with 2 ≤ j ≤ N and j even,
measure either âj0 ¼ σ̂z ⊗ σ̂z or âj1 ¼ σ̂x ⊗ σ̂x; parties j,
with 3 ≤ j ≤ N and j odd, measure either âj0¼
½ðσ̂zþ σ̂xÞ=

ffiffiffi
2

p �⊗ ½ðσ̂zþ σ̂xÞ=
ffiffiffi
2

p � or âj1¼½ðσ̂z− σ̂xÞ=
ffiffiffi
2

p �⊗
½ðσ̂z− σ̂xÞ=

ffiffiffi
2

p �; for N even, party ANþ1 measures either
âNþ1
0 ¼ â10¼½ðσ̂zþ σ̂xÞ=

ffiffiffi
2

p � or âNþ1
1 ¼ â11¼½ðσ̂z− σ̂xÞ=

ffiffiffi
2

p �;
for N odd, party ANþ1 measures either âNþ1

0 ¼ σ̂z or
âNþ1
1 ¼ σ̂x. Defining V ¼ Q

N
i¼1 vi, one finds

ha1x1…aNþ1
xNþ1i ¼ ð−1Þx1x2þx2x3þ���þxNxNþ1 V

2N=2 : ð12Þ
The left-hand side of inequality (11) is then given by

2N=2V
4N−1

X
x2;…;xN

1

q2x2
…

1

qNxN
: ð13Þ

Noting that minq2;…;qN ½
P

x2;…;xN ð1=q2x2Þ…ð1=qNxN Þ�¼4N−1,
we find that the quantum correlations thus obtained violate
the Bell inequality (11)—and hence are non-N -local—for
V > 2−N=2. This proves a conjecture made in Ref. [9].
Interestingly, note that although the global correlations

become very weak for large N and V < 1, their nonlocality
can nevertheless be revealed using the Bell inequality (11).

Notably, this would not be possible using standard Bell
inequalities, as the correlations (12) admit a local model
(assuming a single source) for V ¼ 1 (for N even) and for
V ¼ 1=

ffiffiffi
2

p
(for N odd); see part G of the Supplemental

Material [18]. This illustrates the advantage offered by N
locality compared to the standard approach of Bell.
Star network.—To discuss star-shaped networks, we start

from the bilocality network, i.e., a linear chain of 3 parties
connected by 2 sources. For clarity, we relabel the parties
by calling A1 and A2 the first and last parties in the chain,
and B the middle one. The input and output of B are now
denoted by y and by ¼ �1, respectively. Clearly, N -local
correlations satisfy the Bell inequality (7), with a2x2 replaced
by by and a3

x3
replaced by a2x2.

Similarly to our previous constructions, let us add a
source S3, connected now to party B and to a new partyA3.
The network N 0 thus obtained has a 3-branch star shape
[see Fig. 2(c)]. Applying Theorem 1 to the Bell inequality
of Eq. (7) (and with the two subsets of party B’s inputs
Yþ ¼ f0g and Y− ¼ f1g), we find that N 0-local correla-
tions satisfy the inequality

∃q; r ∈ ½0; 1� such that

1

q
1

r

�
a10 þ a11

2

a20 þ a21
2

a30 þ a31
2

b0

�

þ 1

1 − q
1

1 − r

�
a10 − a11

2

a20 − a21
2

a30 − a31
2

b1

�
≤ 1: ð14Þ

Iterating the above procedure, we obtain a star-shaped
network N consisting of N independent sources Si, each
connected to one out of N parties Ai and to a single central
party B, as depicted in Fig. 2(d). For such a network, we
find that N -local correlations satisfy the inequality
∃q1;…;qN−1 ∈ ½0;1� such that

1

q1
…

1

qN−1

�
a10þa11

2
…

aN0 þaN1
2

b0

�

þ 1

1−q1
…

1

1−qN−1

�
a10−a11

2
…

aN0 −aN1
2

b1

�
≤ 1: ð15Þ

As shown in part E of the Supplemental Material [18], by
eliminating the quantifiers one can recover here the non-
linear Bell inequalities derived in Ref. [10], which general-
ize the bilocal inequalities of Ref. [9] to the star-shaped
network considered here. For violations of these inequal-
ities in quantum theory, we refer the reader to Ref. [10].
Other topologies.—To illustrate the versatility of our

framework, we now discuss a network which is neither a
linear chain nor star shaped. Specifically, we start from a
network N consisting of a single source S1 connected to 3
parties A1, A2, and A3. Here, N -local (i.e., Bell-local)
correlations satisfy the Mermin inequality [23]:

�
a10a

2
1 þ a11a

2
0

2
a30

�
þ
�
a10a

2
0 − a11a

2
1

2
a31

�
≤ 1: ð16Þ
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Adding a source S2, linked to party A3 and to a new party
A4, we obtain a network N 0 sketched in Fig. 2(e). Using
Theorem 1 and choosingX3þ ¼ f0g and X3

− ¼ f1gwe find
that N 0-local correlations have to obey the following Bell
inequality:

∃q ∈ ½0; 1� such that

1

q

�
a10a

2
1 þ a11a

2
0

2
a30

a40 þ a41
2

�

þ 1

1 − q

�
a10a

2
0 − a11a

2
1

2
a31

a40 − a41
2

�
≤ 1: ð17Þ

We examine the quantum violations of the inequality
(17) in part G of the Supplemental Material [18], where the
N 0-locality independence condition exhibits again a sig-
nificant advantage compared to Bell standard locality.
Discussion.—Wepresenteda simple andefficientmethod for

generating Bell inequalities tailored for networks with inde-
pendent sources. The relevance of our method was illustrated
with various examples, featuring strong quantum violations,
which cannot be detected using standard Bell inequalities.
While we focused here on the case of binary inputs and

outputs for each observer, our technique can also be used for
deriving Bell inequalities with more inputs and outputs. In
fact, the only requirements that we explicitly made use of is
that party AM has binary outputs and the added observer
AMþ1 has binary inputs and outputs. In part F of the
Supplemental Material [18], we illustrate for instance a case
with ternary inputs for parties A1 and A2 in the bilocality
scenario, which also includes non-full-correlation terms. In
principle, our technique could also allow for any numbers of
outputs for parties A1;…AM−1; it would just become quite
cumbersome to write without resorting to correlators.
Extending our method to the case where the party AM has
more outputs, and party AMþ1 has an arbitrary number of
inputs and outputs, is left for future work.
Finally, it would be interesting to derive Bell inequalities

tailored for networks featuring loops. In the present work
we could only discuss acyclic networks, as our method
allows us to “add a leaf” to a graph, but not to create a cycle.
Note, however, that given a Bell inequality tailored for a
network with a loop, our method can readily be applied in
order to add a leaf; however, we are not aware of any
nontrivial Bell inequality for networks containing a loop,
despite intense research efforts in this direction [9,12].
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manuscript. C. B. acknowledges financial support from the
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from the Swiss National Science Foundation (Grant
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(COST action MP1006) and the EU SIQS.

Note added.—While writing up this Letter, we became
aware of related and complementary work. First, Lee and
Spekkens [24] presented a method for characterizing
DAGs of any shape, but restricted to two binary variables.
Second, Chaves [25] discussed polynomial Bell inequal-
ities applicable to multivalued variables, but for a restricted
class of DAGs. This opens up the interesting possibilities of
combining these different methods in order to obtain Bell
inequalities in situations where none could be obtained by
any of the methods individually.
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