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It is a recent realization that many of the concepts and tools of causal discovery in machine learning are
highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial
ingredient in the connection between both fields is the mathematical theory of causality, allowing for the
representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic
causation. Indeed, Bell’s theorem concerns a very particular kind of causal structure and Bell inequalities
are a special case of linear constraints following from such models. It is thus natural to look for
generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such
generalized scenarios are characterized by polynomial Bell inequalities and no current method is available
to derive them beyond very simple cases. In this work, we make a significant step in that direction,
providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities
in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of
causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.
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Bell’s theorem [1] demonstrates that our classical con-
ceptions of causal relations must be taken with care, as they
fail to commit with the results obtained in quantum
experiments performed by distant parties, the phenomenon
of quantum nonlocality. Remarkably, in order to prove the
emergence of nonlocal correlations, it is sufficient to
consider a very simple causal structure, where due to the
distance between the parties it is natural to assume, at least
classically, that the correlations between them are mediated
via causal influences originating in a common local hidden
variable (LHV). Yet, quantum theory predicts that the
correlations obtained via local measurements performed
on distant entangled particles are incompatible with any
classical theory fulfilling such a natural causal description.
Recently, it has been realized that one can significantly

expand the notion of quantum nonlocality by considering
more complex causal structures going beyond the usual
LHV models [2–10]. At the basis of this new research
program lies the mathematical theory of causality [11,12],
which provides a rigorous and systematic way to reason
about causal relations and causal structures. This realization
has already lead to new insights about the tension between
quantum mechanics and causality [6,13–16] and reveals a
much richer structure of quantum correlations than the one
we could naively presume from Bell’s paradigmatic causal
structure alone [2–9].
As an illustration of such generalized scenarios and its

applications, consider an entanglement swapping experi-
ment [17]. Starting with two independent pairs of entangled
particles and jointly measuring one particle from each pair,
we can generate entanglement and nonlocal correlations
between the two remaining particles, even though they have

never interacted. In this case, to contrast the quantum and
classical descriptions we have to consider a finer structure
for the underlying causal model that should now be
described by uncorrelated LHVs and thus introduces
additional structure to the set of allowed correlations [3].
Generally, since models with many independent sources are
more restrictive to classical explanations, they offer a novel
new route to decrease the requirements on experimental
implementations of Bell tests [3,4,18]. In fact, as shown in
Refs. [19,20], arranging multiple copies of an entangled
(but local at the single-copy level) state into complex
networks may reveal its nonlocality. Furthermore, scenarios
with many independent sources of quantum states are
ubiquitous in quantum information, e.g., quantum networks
[21,22] and quantum repeaters [23]. Thus, understanding
generalized Bell scenarios is not only of fundamental
interest but also of high practical relevance.
Within that context, the basic question to be solved is

how to derive Bell inequalities for general Bell scenarios,
whose classical causal description will be named here as
generalized local hidden variables (GLHV) models. Bell
inequalities play a fundamental role in the study of non-
locality, since it is via their violation that we can witness the
nonlocal character of experimental data. Unfortunately,
opposed to usual Bell scenarios, GLHV models imply a
nonconvex region—characterized by polynomial Bell
inequalities—of correlations that are compatible with it.
Given this difficulty, only sparse results have been obtained
for GLHV models, either using coarse-grained information
[6,8,24–26] or considering particular scenarios and tech-
niques of limited application [3,4,27,28]. In causal infer-
ence, techniques from algebraic geometry (AG) were
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shown to provide, in principle, a general solution to this
problem [29]. Unfortunately, given their double exponen-
tial computational complexity [30–33], their application to
Bell scenarios is intractable already for the simplest
possible models [34,35]. Even the most computationally
amenable tools from AG [34,36,37] are unable to character-
ize structures beyond 5 binary variables [34]. It is clear that
in spite of the existence of general purpose methods, they
are far from delivering a relevant and practical tool for the
study of the emergence of nonlocality in complex causal
structures.
In this Letter we propose a new and general method for

deriving polynomial inequalities in generalized Bell sce-
narios. As opposed to other available methods requiring a
high level of expertise in algebraic geometry [29,34], our
approach involves basic concepts from convex optimiza-
tion and thus provides a more accessible tool for the
analytic derivation of inequalities in a variety of scenarios.
Moreover, in spite of the intrinsic high computational
complexity of the problem, our approach is computation-
ally more accessible than previous attempts. Finally, our
construction allows for relaxations of causal constraints
and, as shown in the Supplemental Material [38], naturally
introduces a notion of nonsignaling [45] in generalized
scenarios.
Bell inequalities, causal structures, and algebraic

geometry.—Bell scenarios beyond LHV models can be
represented via the graphical notation of directed acyclic
graphs (DAG), where nodes stand for variables and directed
arrows represent causal relations [11,12]. LHV models
correspond to DAGs with a single hidden variable. For
instance, the DAG in Fig. 1(a) represents the usual causal
structure from a Bell experiment, where a common source
produces particles emitted to two observers that at each

round of the experiment measure a given observable,
labeled by X and Y, respectively, obtaining outcomes A
and B. GLHV models have a similar physical intuition, the
difference being that they are represented by DAGs with
n ≥ 2 independent hidden variables [Figs. 1(b)–1(c)]. The
causal relations implied by DAGs are captured by the
(conditional) independencies (CI) implied by the graph
[11]. For instance, for the LHVmodel in Fig. 1(a) it follows
that pðx;y;λÞ¼pðxÞpðyÞpðλÞ and pðajx; y; λÞ ¼ pðajx; λÞ
(similarly to b).
To contrast the difference in the geometry of correlations

of LHV and GLHV models, consider the models in
Figs. 1(a)–1(b). From the CIs implied by the DAG in
Fig. 1(a) it follows that any observable data pða; bjx; yÞ
compatible with a LHV model can be decomposed as

pða; bjx; yÞ ¼
X

λ

pðajx; λÞpðbjy; λÞpðλÞ: ð1Þ

That is, any LHV distribution lies inside the convex set
defined by Eq. (1), the correlation polytope C [46,47]. In
this geometric picture, (linear) Bell inequalities are nothing
other than facets of C. Given the list of the extremal points
of C, finding its facets amounts to dualize the description of
the polytope, the facet enumeration problem.
In turn, from the DAG in Fig. 1(b), it follows that any

GLHV model compatible with it can be written as

pða;b;cjx;y;zÞ
¼
X

λ1;λ2

pðajx;λ1Þpðbjy;λ1;λ2Þpðcjz;λ2Þpðλ1Þpðλ2Þ: ð2Þ

Because of the independence of the underlying hidden
sources [pðλ1; λ2Þ ¼ pðλ1Þpðλ2Þ], Eq. (2) implies a non-
convex region. Therefore, the techniques developed for
LHV models can no longer be applied.
In this case, one can, in principle, resort to the AG

approach [29], where the constraints implied by a DAG are
encoded in a semialgebraic set, a list of polynomial
equalities and inequalities in all variables composing the
DAG. Given that some of the variables are not observable
they need to be eliminated from our description. Formally,
the problem is equivalent to quantifier elimination: the
projection of a semialgebraic set onto a subspace of it, that
by the Tarski-Seidenberg theorem is again a semialgebraic
set [29,30]. Via quantifier elimination we obtain a full
description, in terms of polynomial inequalities, of the
marginal scenario of interest associated with any DAG. The
problem with the usual methods [29,34,36] resides in its
complexity, that not only is it double exponential, but also
depends on the domain size of all model variables,
including hidden ones. Even for the simplest possible
Bell scenario, the bipartite LHV model in Fig. 1(a)
with dichotomic inputs and outputs (x; y; a; b ¼ 0, 1),
the hidden variable is 16-dimensional, implying a total
256-dimensional object, far beyond computational reach

(a)

(b) 

(c) 

FIG. 1. DAG representation of causal structures. (a) Bipartite
LHV model. (b) Tripartite GLHV model with 2 independent
hidden variables representing an entanglement swapping
experiment [3,17]. (c) Four-partite GLHV model with 2 hidden
variables.
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[34,35]. It is clear that AG methods, while allowing for the
characterization of arbitrary DAGs, are not a viable option
in the study of Bell scenarios.
New method for deriving polynomial Bell inequalities.—

To circumvent this problem, our method relies on the
realization that Bell inequalities can be seen as constraints
arising from a marginal problem [48]: given some marginal
distributions of n variables is it possible to find a joint
distribution of all variables, such that this distribution
marginalizes to the given ones? To see that Bell’s theorem
is indeed a particular marginal problem, notice that the
LHV description (1) is equivalent to the existence of a joint
distribution p ¼ pða0;…; amx

; b0;…; bmy
Þ (represented as

a vector p) describing the probability for outcomes of all
possible measurements, where ai labels the outcome a
given that x ¼ i ¼ f0;…; mxg and similarly for b. Since p
defines a valid probability, it is constrained by a set of linear
inequalities Lp ≥ 0 given by pi ≥ 0 (positivity) andP

ipi ¼ 1 (normalization) defining the simplex polytope
P [49]. Moreover, given that at each round of the experi-
ment only one ai and one bj can be measured simulta-
neously, p defines a nonobservable quantity. However, the
constraints on p will also imply constraints on the level of
the observable distributions pðai; bjÞ. These are exactly
Bell inequalities, that in this picture can be understood as
necessary and sufficient conditions for the marginal prob-
lem to have a positive answer.
Similarly, a GLHV model also implies the existence of a

joint distribution p characterized by linear inequalities
Lp ≥ 0. The difference being that GLHV models also
imply a set of polynomial inequalities WðpÞp ≥ 0 as
described by the CIs implied by the associated DAG.
This is the case in the DAG of Fig. 1(b) implying the
independence relation pða; cÞ ¼ pðaÞpðcÞ and in
many other relevant scenarios in quantum information
[3,4,6–10,17,19–23]. In these cases, the GLHV model is
characterized by the intersection of P with WðpÞp ≥ 0,
again a semialgebraic set but one that now does not depend
on hidden variables of the DAG anymore. Clearly, this
enormously reduces the number of variables requiring
double exponential complexity algorithms to be eliminated.
On the negative side, not all DAGs display CIs on the level
of p; in this case, AG methods are likely to be the only
possible route.
Our approach consists of performing a quantifier elimi-

nation (over unobservable terms) in the joint system of
inequalities Lp ≥ 0 and WðpÞp ≥ 0, to which one could
use standard techniques such as cylindrical algebraic
decomposition [50]. Instead, we propose a new quantifier
elimination procedure that combines facet enumeration
and the Fourier-Motzkin (FM) elimination [51], basic
tools from convex optimization—therefore avoiding the
conceptual and technical challenges from an AG
description.

The method proceed as follows. Given the scenario of
interest, we need to define pO and pNO standing, respec-
tively, to the set of componentspi that wewant to keep or not
in our description. We also need to define pLNO and pWNO.
The first corresponds to components in pNO appearing only
in Lp ≥ 0, the latter describes components in pNO also
appearing inWðpÞp ≥ 0. Terms pLNO can be eliminated via
FM elimination over Lp ≥ 0, obtaining a new set of linear
relations L0p ≥ 0. Equivalently, to obtain L0p ≥ 0, we can
instead resort to the usual facet enumeration procedure.
The terms in pWNO have to be eliminated considering

L0p ≥ 0 andWðpÞp ≥ 0 jointly. To that aim, notice that this
system of inequalities can be linearized by considering some
of the variables as free parameters of the problem. Given
WðpÞp ≥ 0 there is going to be a minimum set of non-
observable variables pFWNO that need to be set to free
parameters in order to linearize the problem. Chosen pFWNO
we can perform a FM elimination over the remaining terms
inpWNO, obtaining a new systemof inequalitiesW0ðpÞp ≥ 0
depending nonlinearly on terms pFWNO. To obtain inequal-
ities depending on the observable data only we have to
further eliminate the terms pFWNO. In this last step, the
algorithm relies on the usual quantifier eliminationmethods.
We highlight that this quantifier elimination will be per-
formed on a much smaller number of variables given by
jpFWNOj. In fact, for the bilocality scenario [Fig. 1(b)] this
last stepwill involve the elimination of a singlevariable only,
clearly illustrating the huge computational benefit of this
approach.

Examples.—Our method provides a computationally more
accessible route as compared to usual approaches from AG.
However, given the intrinsic high complexity of the prob-
lem, its computational treatment is still bounded to cases
with few variables. This is similar to what happens in the
usual LHVmodels, since the full characterization of even the
seemingly simple Bell causal structure in Fig. 1(a) is in
general computationally intractable [46]. To be able to
obtain Bell inequalities for more complex LHV models
[52–55], the conceptually simple and clear geometric under-
standing of Bell polytopes [46] has become an indispensable
tool. Our approach provides the equivalent conceptually
simple description of GLHVmodels and as shown next (and
detailed in Ref. [38]) allows for the straightforward deriva-
tion of polynomial inequalities in a variety of scenarios.
For simplicity, in the following we focus on dichotomic

outcomes (e.g., ai ¼ 0, 1). It is then convenient to consider
the equivalent description of the problem in terms of the
correlation vector E with components given by expectation
values, e.g., hAiBji ¼

P
ai;bjð−1Þaiþbjpðai; bjÞ. The vec-

torsE and p are linearly related asE ¼ T−1p implying that
E must obey linear inequalities TE ≥ 0.
Consider, for instance, the following question: given a

certain Bell inequality valid for LHV models, how is it
modified in the presence of further causal constraints? For
example, how is the LHV inequality for a tripartite system
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jIj þ jJj ≤ 4; ð3Þ

where I¼P
x;z¼0;1hAxB0Czi and J¼P

x;z¼0;1ð−1Þxþz×
hAxB1Czi, modified if we assume the bilocality constraint
[3] following from the DAG in Fig. 1(b)? To prove that
Eq. (3) is a valid inequality it is sufficient to consider the
inequalities following from TE ≥ 0:

� I − hA0A1i − hC0C1i − hA0A1C0C1i ≤ 1; ð4Þ

� J þ hA0A1i þ hC0C1i − hA0A1C0C1i ≤ 1: ð5Þ

Summing these inequalities and using hA0A1C0C1i ≤ 1 we
obtain Eq. (3). Instead, considering the independence
constraint following from the DAG in Fig. 1(b),

hA0A1C0C1i ¼ hA0A1ihC0C1i; ð6Þ

and substituting it in Eqs. (4) and (5), after some manipu-
lations we can combine them into the polynomial inequality

2hA0A1i2 þ ð�J∓IÞhA0A1i − ð�I � J þ 2Þ ≤ 0: ð7Þ

As discussed in the general algorithm, we arrive at an
inequality having a nonlinear dependence on nonobservable
terms, in this case hA0A1i. Here, the quantifier elimination of
the unobservable term hA0A1i corresponds simply to solve
the quadratic equation (7). Theminimumof the polynomial in
Eq. (7) is achieved at hA0A1i ¼ ð�I∓JÞ=4, implying an
inequality in terms of observable data only:

−ð1=8Þð�I −∓JÞ2 − ð�I � J þ 2Þ ≤ 0; ð8Þ

equivalent to the bilocality inequality derived in
Refs. [3,4,27], using much more involved and less general
techniques. Consider the correlation I ¼ J ¼ 2 that can be
achievedquantummechanicallywith twocopies ofBell states
shared between the parties [27]. This correlation admits a
LHV model but violates Eq. (8), illustrating the fact that
GLHV models are more restrictive to classical explanations
and therefore can witness a larger class of nonlocal
correlations.
Another nice feature of our construction is the fact that

independencies are not required to hold exactly: we can
quantify how much a given constraint must be relaxed in
order to explain some experimental data [15,56]. In the
bilocality scenario, allowing for correlations CAC ≥
jhA0A1C0C1i − hA0A1ihC0C1ij between A and C, it fol-
lows that

−ð1=8Þð�I −∓JÞ2 − ð�I � J þ 2Þ ≤ 2CAC; ð9Þ
that is, the violation of Eq. (8) quantifies the degree of
correlation required to classically reproduce some non-
bilocal correlation. Considering again I ¼ J ¼ 2, we see

that it requires a maximum correlation CAC ¼ 1 to be
reproduced.
To further illustrate the practicality of our method we also

analytically derive in Ref. [38] new polynomial inequalities
for scenarioswithmoremeasurement settings or parties. The
relevance of such scenarios stems from the fact that they
typically allow for reductions in the experimental require-
ments (e.g., detection efficiency) for the observation of
nonlocality [55,57–59]. Using our method to derive new
inequalities and analyze how they may reduce experimental
requirements is an interesting topic for future research.
For instance, considering the four-partite scenario in

Fig. 1(c), it follows that a similar inequality to Eq. (8) also
holds. The DAG in Fig. 1(c) involves 10 nodes, being
completely intractable with computational tools. In turn,
considering the bilocality scenario in Fig. 1(b) with 3
measurement settings, it follows that

−ð1=8ÞðI − J þ 16Þ2 þ 8I ≤ 0 ð10Þ

holds, with I ¼ P
x;z¼0;1;2hAxB0Czi and J ¼P

x;z¼0;1;2ð−1ÞxþzhAxB1Czi. Choosing I ¼ J ¼ 9v
(achievable in quantum mechanics for v ≤ 1=2) it follows
that for v ≤ 5=9 the correlation is local. However, Eq. (10)
is violated for v > 4=9, illustrating the gap between the
local and bilocal sets in this case.

Discussion.—Complex causal structures beyond the usual
LHV models offer an almost unexplored territory for gener-
alizationsofBell’s theorem.The basic question to be solved in
this quest is how to derive polynomial Bell inequalities
bounding the classical correlations compatible with them.
In this work we made an important step in that direction. We
proposed a new and general method that can be readily
applied to a wide range of scenarios, considering its appli-
cation in few GLHV models and deriving polynomial Bell
inequalities characterizing them. Our approach not only
provides a more accessible computational route but also,
given its conceptual clarity, allows for analytical derivations
of polynomial Bell inequalities. Furthermore, it allows for
relaxations of causal constraints and naturally leads to a
notion of nonsignaling correlations in GLHV models [38].
Given the fundamental role that Bell inequalities play in

the study and practical applications of nonlocality, we
believe that our results will motivate and set a basic tool for
future research. The natural next step is to put the
machinery to use in a variety of scenarios, understanding
how known inequalities are modified in the presence of
extra underlying causal constraints and deriving new
inequalities well suited, for example, to decrease the
requirements on experimental implementations. It would
be interesting to investigate the role of polynomial Bell
inequalities in practical applications of nonlocality, such as
quantum cryptography [60], randomness generation
[61,62], or distributed computing [63]. For instance, the
amount of violation of usual Bell inequalities can be
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directly associated with the probability of success in
communication complexity problems [63,64]. Are there
any communication problems associated with polynomial
Bell inequalities? Another possibility is to find Tsirelson’s
bounds [65,66] associated with generalized inequalities,
that is, their maximum violation achievable with quantum
correlations. Related to that and inspired by results such as
information causality [67], it would also be relevant to
derive information-theoretical principles for these more
complex causal structures [9].

We acknowledge financial support from the Excellence
Initiative of the German Federal and State Governments
(Grants No ZUK 43 and 81), the U.S. Army Research
Office under Contracts No. W911NF-14-1-0098 and
No. W911NF-14-1-0133 (Quantum Characterization,
Verification, and Validation), and the DFG (GRO 4334
and SPP 1798).

Note added.—After completion of this work, a related and
complementary work discussing polynomial Bell inequal-
ities has appeared [68]. Also, algebraic geometry methods
have been recently proposed in Ref. [37]. Combining these
and the present results opens interesting lines for future
research.
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