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Teleconnections describe remote connections (typically thousands of kilometers) of the climate system.
These are of great importance in climate dynamics as they reflect the transportation of energy and climate
change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between
such remote regions, and weighting associated with different paths, are only partially known. Here we
propose a systematic climate network approach to find and quantify the optimal paths between remotely
distant interacting locations. Specifically, we separate the correlations between two grid points into direct
and indirect components, where the optimal path is found based on a minimal total cost function of the
direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying
cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to
quantify and improve our understanding regarding the emergence of climate patterns on global scales.
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Teleconnections refer to persistent relations between
climate anomalies of geographically separated regions
[1–5]. Atmospheric or oceanic teleconnections dominate
the climate variability on different time and spatial scales
[1]. Teleconnections received much attention since they
stand for the transport of energy and the climate dynamics
on global scales (typically thousands of kilometers); as
such they probably have an important role in global climate
change and variability [1,6].
Various teleconnection patterns represent different pre-

ferred modes of large scale variability, in both the tropics
and the extratropics [1,2,7]. These patterns can be
captured by various methods, such as teleconnection
maps based on Pearson correlation (linear) or mutual
information (nonlinear), and principal component analysis
[2,8]. The most prominent atmospheric patterns include
the El Niño–Southern Oscillation (ENSO), the Arctic
Oscillation (AO), the North Atlantic Oscillation (NAO),
the North Pacific Oscillation–West Pacific pattern (NPO-
WP), the Pacific–North America pattern (PNA), the
Southern Annular Mode (SAM) and the Pacific–South
American pattern (PSA) [1,2,7,9–12]. Some of these
patterns influence each other such as the teleconnections
that are related to ENSO [1,2,6].
Generally speaking, most teleconnections are caused by

the transport of energy and propagation of waves [1].
However, the mechanisms of specific teleconnections are
still not well understood, since these known patterns
describe the mature phase of the variability instead of
the developing phase [2]. Therefore, deeper investigations
on the evolutionary process in the spatiotemporal domain
are needed [2].
In the recent decade, climate network methods have been

introduced to describe the spatiotemporal behavior of

climate interactions. In climate networks, nodes represent
geographical sites, and links are generated using correla-
tion, mutual information, or other dependence measures,
between the time series of two nodes [13–15]. Networks
constructed in this way were already utilized to explore
climate mechanisms or to predict extreme events [13–23].
Paths of influence that are associated with the tele-

connections have not been analyzed systematically using
climate network approaches. Naively applying search
algorithms for these paths is, however, not possible. The
reason being that most links in networks that are inferred
from time series arise, in fact, mainly due to indirect
interactions between two nodes through intermediate nodes
or from “common-driver” nodes. This issue has arisen, and
was shown to be important in various different disciplines
(see, e.g., [24–30]). Different approaches to tackle this
problem include partial correlation, conditional mutual
information, and conditional Granger causality [26–31].
In the context of climate networks, this problem was
thoroughly discussed in [32–34]. Runge et al. [32,34] also
note that direct interactions need not be instantaneous but,
instead, can bear time lags.
In this Letter, we develop a modified partial correlation

method to calculate direct links. We identify the optimal
direct link paths for the observed teleconnections by
minimizing the total cost function based on direct link
weights. This approach enables us to capture the dominant
propagation paths associated with teleconnections.
Our analysis is based on global coverage of near surface

(1000 hPa) daily mean air temperature data from the
National Centers for Environmental Prediction and the
National Center for Atmospheric Research (NCEP-NCAR)
reanalysis project [35]. The time series span 63 years
(1948–2010). The original resolution of the data is 2.5° and
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we consider here a subset of n ¼ 726 nodes that approx-
imately equally cover the globe; the distance between
neighboring nodes is around 830 km in both zonal and
meridional directions (see the node set in Fig. S1 in the
Supplemental Material [36]).
From the temperature time series we obtain the temper-

ature anomaly SiðtÞ; t ¼ 1; 2;…; 63 × 365, by subtracting
the calendar day’s mean and the linear trend over 63 years.
For each pair of nodes i and j, we calculate the cross-
correlation between the two time series, Xi;jðτÞ, where τ ¼
−τmax;…; τmax is the time lag (in days), and τmax ¼ 800
days. To avoid edge effects, we use the anomaly time
series from day ðτmax þ 1Þ to day ð63 × 365 − 2τmaxÞ, i.e.,
total length L ¼ 20 595 days. Next, the observed positive
and negative link weights are defined as Wobs;pos

i;j ¼
½(maxðXi;jÞ −meanðXi;jÞ)=stdðXi;jÞ�, and Wobs;neg

i;j ¼
½(minðXi;jÞ −meanðXi;jÞ)=stdðXi;jÞ� [17]. The observed

time delays τobs;posi;j and τobs;negi;j are the values of τ where
Xi;jðτÞ reaches its maximum and minimum, respectively.
Note that Runge et al. studied direct link strengths and time
lags based on a time series graph method [32,34]. The
analysis of Runge et al. differs from ours. First, we focus on
finding paths of influence between distant sites interacting
by teleconnections. Second, we engage in our analysis
daily (compared to monthly in [34]) records, and a larger
set of nodes covering the globe, since our aim is to study the
teleconnections. Biases in the link identification due to
strong autocorrelations are basically canceled due to the
denominator, stdðXi;jÞ, in the above definitions (see [37] for
a deeper view on this issue, which is tackled somewhat
differently also in [34]).
Here we base the removal of indirect effects and

calculation of direct links on the classical partial correlation
approach. For each pair of nodes i and j, we denote the time
delay corresponding to the maximum of the absolute cross-
correlation value jXi;jj by τobs;absi;j . Then, we perform
multivariate linear regressions for the time series SiðtÞ
and SjðtÞ:

SiðtÞ ¼
X

k≠i;j
aikSkðtþ τobs;absi;k Þ þ bi þ εiðtÞ; ð1Þ

SjðtÞ ¼
X

k≠i;j
cjkSkðtþ τobs;absj;k Þ þ dj þ εjðtÞ; ð2Þ

where t ¼ τmax þ 1; τmax þ 2;…; Lþ 2τmax. By the above
multilinear regressions we remove the indirect effects of all
the other nodes k from the time series of nodes i and j, and
obtain two new time series εiðtÞ and εjðtÞ. Based on εiðtÞ
and εjðtÞ, we define the positive and negative direct link

weights Wdir;pos
i;j and Wdir;neg

i;j , as well as the corresponding

time delay values τdir;posi;j and τdir;negi;j , similarly to the
observed link definition. The main difference between this

method and the classical partial correlation method is that
we introduce the observed time delay τobs;absi;k and τobs;absj;k

into the sum over all the other nodes k, instead of zero lag in
classical methods [38]. The introduction of the delay is
necessary to capture the strongest relation between nodes, a
relation (correlation) that can be either positive or negative.
Figures 1(a) and 1(b) show the two-dimensional distri-

bution of direct and observed link weights for positive and
negative links, respectively. Figures 1(c) and 1(d) further
show the probability density function (PDF) of these
observed or direct positive and negative links. It is clear
that there is no strong relation between the observed and
direct link weights as a wide range of observed link weights
is associated with the same direct link weight. Figure 2
depicts the link weights (both positive and negative) as a
function of the geographic distances Di;j of the global
observed and direct links. The results are in accordance
with the results of [17] that associate the distance between
peaks in Figs. 2(a) and 2(b) with Rossby wave wavelength.
However, as shown in Figs. 2(c) and 2(d), these peaks are
not present in the direct link network. Strong direct positive
links are related to short distances (neighboring nodes),
suggesting that the long observed positive links are the
results of information propagation through short direct
positive links. Below, we investigate the direct link paths
for the observed positive teleconnections.
To isolate the significant long-distance and cross-latitude

links (teleconnections), we focus on positive links with
(i) distance Di;j ≥ 5000 km, (ii) link weight Wobs;pos

i;j ≥ 9

[as depicted by the dashed line in Fig. 2(a)], and (iii) latitude
distance larger than 20°. These 226 observed links (out of
726 × 725=2 ¼ 263 175 possible links) are depicted in
Fig. 3. It is apparent that many of them are along the

FIG. 1 (color online). (a) The direct positive link weightWdir;pos
i;j

versus the observed one Wobs;pos
i;j . Two-dimensional frequency of

links in the Wobs;pos
i;j versus Wdir;pos

i;j space. (b) Same as (a) for
negative links. (c) PDF of Wobs;pos

i;j (blue) and Wdir;pos
i;j (red).

(d) PDF of Wobs;neg
i;j (blue) and Wdir;neg

i;j (red).
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pathway of atmospheric Rossby waves, especially in the
southern hemisphere. We focus on two examples of tele-
connections which are marked by red in Fig. 3. Example 1
is the connection between the Norwegian Sea and southern
Japan. Example 2 connects the Drake Passage with western
Australia. We consider these two teleconnections since they
are typical examples that are related to different climate
processes, and they enable detailed comparison with the
previous literature. To identify the dominant direct link
paths between two nodes, we consider a subset of direct
positive links which satisfy (i) distance Di;j ≤ 1000 km,

and (ii) link time delay τdir;posi;j ≥ 0. The second condition

ensures that all steps have the same direction (with non-
negative time delay). In this subset of weighted and
directed links, we use 1=Wdir;pos

i;j as the cost value for each
link. For each pair of nodes i and j, we can determine
the directed optimal path (sum of costs minimal) using the
Dijkstra algorithm [39]. In this way, we identify the
preferred paths for information spreading in the two-
dimensional space of near surface air temperature. In
addition, the related measure of “betweenness” (basically
the number of shortest paths through a node) is presented in
the Supplemental Material [36] (Fig. S1). The shortest
paths represent the optimal paths of transfer between
specific pairs of nodes, while nodes with the largest
betweenness values play the most important role in the
global information flows. Here, we mainly focus on
positive teleconnections. Two more positive teleconnec-
tions seen in Fig. 3 are discussed in the Supplemental
Material [36] (Figs. S2 and S3). In fact, our approach is also
applicable for negative teleconnections that are related to
wave propagations. After propagating along the wave for a
period of time (corresponding to half wavelength),
although each step is a positive link, one should observe
a negative long link when this dominates the cross-
correlation. The optimal paths in these cases can be
captured similarly to positive teleconnections. We show
two examples of negative teleconnections in the
Supplemental Material [36] (Figs. S4 and S5).
Figures 4(a) and 4(c) show the optimal direct link paths

for the two examples of observed positive teleconnections
that are indicated by the red color in Fig. 3. Figures 4(b) and
4(d) depict the corresponding cross-correlation functions of
the observed links (to obtain a clearer view it is limited to
τ ¼ −50;…; 50). For each example, we show both the
observed link (indicated by the black line) and the directed
shortest path (indicated by the colored circles and lines); the
arrow indicates the direction of both the observed link and
the directed optimal path. The color of each step along the
optimal path indicates the “performance ratio,” which is the
ratio between the weight of the chosen direct link at this
step and the mean direct link weight over all neighboring
nodes. Therefore, if all neighboring nodes have the same
weight the ratio will be 1, and thus a ratio larger than 1
indicates that the chosen link is better than the average at
this step. (The extreme maximal ratio is equal to the number
of neighboring nodes and it occurs when the weights of the
neighboring links except the chosen one are all 0.)
As shown in Figs. 4(a) and 4(c), the observed tele-

connection in Example 1 has a six-day time lag from the
Norwegian Sea to southern Japan, which agrees with the
wave train pattern generated by NAO from the North
Atlantic to East Asia [40–42]. The obtained direct link
shortest path also follows the pathway of this wave
propagation (resembling a much broader path shown in
Fig. 2 of [40] and Fig. 3 of [41]). In Example 2, the
observed link has a five-day time lag from the Drake

FIG. 2 (color online). Link weights as a function of geographi-
cal distances. (a) Observed positive links. The horizontal dashed
line at Wobs;pos

i;j ¼ 9 is the threshold for the observed positive link
weights we considered later in Fig. 3. The two arrows indicate the
two positive link peaks related to Rossby waves. (b) Observed
negative links. The two arrows indicate the two negative link
peaks related to Rossby waves. (c) Direct positive links. (d) Direct
negative links.

FIG. 3 (color online). 226 strong and long observed positive
links which have (i) distance larger than 5000 km,
(ii) Wobs;pos

i;j ≥ 9, and (iii) latitude difference above 20°. The
red circles and lines indicate the two examples considered in the
text and in Fig. 4.
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Passage to western Australia, and based on Fig. 4 of [17], it
is probably related to Rossby waves activity in the southern
hemisphere. The optimal path here also suggests an east-
ward propagation. Besides the observed teleconnections
highlighted in Fig. 3, we consider another example in the
South Pacific; the weight value of this link is relatively
small, while its maximal cross-correlation is still high. As
shown in Figs. 4(e) and 4(f), the observed teleconnection in
Example 3 has a five-day time lag, and it is directed from
the South Pacific to the northwestern South America. The
obtained optimal path follows the mean winds (westerlies)
in the region and also the Humboldt Current (the northward
current adjusted to the western side of South America).
For these three paths, we calculate both the total cost

value and the fraction of steps with performance ratios
larger than 1 (“good steps”), which are two different ways
to evaluate the optimal paths. In the Supplemental Material
[36], we estimate the significance of each path by compar-
ing the total cost with the total costs of the surrogate paths,
and we find that all these three optimal paths are significant.

As a supplementary measurement of the goodness of the
paths, we also find that the fractions of good steps for the
three examples are large enough, as they are larger than or
equal to the 95% quantile. Moreover, in these three
examples, the second shortest paths are very close to the
first shortest paths. These three findings (significantly small
total costs, large fractions of good steps and similarity
between the first and second shortest paths) strengthen the
climatic interpretation of our results.
In summary, teleconnections are very important proc-

esses in the climate system as they connect very remote
regions. It is thus clear that improvement of their character-
istics will improve our description and understanding of the
climate system. Here, we developed a climate network
approach that detects significant teleconnections and their
associated optimal paths in a systematic and quantitative
way. Our method is based on the partial correlation
approach and it is applied on the global near surface air
temperature network. Unlike the observed network, the
direct link network exhibits strong correlation only between
neighboring nodes; we thus relate the observed long links
(teleconnections) to the information propagation along
direct link paths along neighboring nodes. The shortest
path is identified by minimizing a total cost function that is
the sum over the reciprocals of the direct link weights. We
presented three examples for which the observed tele-
connections are related to waves, winds, or currents. We
find highly significant direct link optimal paths that capture
the preferred propagation paths for these teleconnections.
We believe that our approach is unique and that it will
facilitate the study of directed paths which might lead to
better understanding of the global climate system. Our
approach could be also extended to study and improve our
knowledge in other fields such as neuroscience, systems
biology, and financial systems.
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