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We compare experimental results from a quasi-two-dimensional colloidal hard sphere fluid to a
Monte Carlo simulation of hard disks with small particle displacements. The experimental short-time self-
diffusion coefficient DS scaled by the diffusion coefficient at infinite dilution, D0, strongly depends on the
area fraction, pointing to significant hydrodynamic interactions at short times in the experiment, which are
absent in the simulation. In contrast, the area fraction dependence of the experimental long-time self-
diffusion coefficient DL=D0 is in quantitative agreement with DL=D0 obtained from the simulation. This
indicates that the reduction in the particle mobility at short times due to hydrodynamic interactions does not
lead to a proportional reduction in the long-time self-diffusion coefficient. Furthermore, the quantitative
agreement between experiment and simulation at long times indicates that hydrodynamic interactions
effectively do not affect the dependence of DL=D0 on the area fraction. In light of this, we discuss the link
between structure and long-time self-diffusion in terms of a configurational excess entropy and do not find
a simple exponential relation between these quantities for all fluid area fractions.
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Introduction.—Understanding the relationship between
structure and dynamics is a long-standing problem in the
study of fluids and glasses [1,2]. Many such links have
been proposed, including a simple scaling relation between
the diffusion coefficient and the excess entropy, via the
radial distribution function [3–13]. Key in experimentally
testing such a relation is the careful characterization of both
the structure and dynamics of the system. For atomic
liquids, while structural properties are readily available
using scattering methods [14], the self-diffusion coeffi-
cients are usually only available for certain atomic species
and a small range of temperatures [15–17]. Experimentally,
colloidal suspensions are well-established model systems
as both structural and dynamic information can be obtained
in one experiment at a single particle level over a wide
range of time scales using optical microscopy [18–32].
However, in addition to the direct interactions between
particles, colloidal systems exhibit solvent-mediated hydro-
dynamic interactions (HI), not found in atomic systems.
These often complicate or obscure direct relations between
structural and dynamic properties, and thus, a detailed
understanding of HI in colloidal model fluids is imperative
for the interpretation of experimental results.
Disentangling the effects of direct and hydrodynamic

interactions is an extremely complex problem, yet a crucial
one in establishing a satisfactory relationship between the
structure and dynamics of fluids. While it is well accepted
that HI are important at short times [26,30,33–35], there is

currently no consensus about the effect of HI at long times
[23,28,36–40]. As a result, many theoretical and simulation
studies of long-time dynamics either ignore the effect of HI
altogether [41,42] or include them in an approximate
manner, for example, using the effect of HI at short times
[43,44]. It is therefore very difficult to determine whether
deviations between experiment and theory originate from
errors in the description of the direct interactions or whether
they are due to the effects of HI.
In this Letter, we compare an experimental quasi-two-

dimensional (2D) colloidal hard sphere fluid to a
Monte Carlo (MC) simulation of hard disks with small
particle displacement moves. In particular, we study the
scaled short- and long-time self-diffusion coefficients,
DS;L=D0, with D0 the diffusion coefficient at infinite
dilution. While the scaled short-time self-diffusion coef-
ficient of the experiment, DS=D0, strongly depends on the
area fraction, pointing to significant HI at short times,
quantitative agreement between experiment (with HI) and
simulation (without HI) is found with respect to DL=D0.
This directly indicates that the reduced particle mobility at
short times, which results from hydrodynamic interactions,
is not reflected in the long-time self-diffusion of the
particles. In fact, the quantitative agreement between
experiment and simulation with respect to DL=D0 implies
that HI effectively do not affect the dependence of DL=D0

on the area fraction. Finally, as our experimental system is
an excellent model for hard disks both structurally and
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dynamically at long times, we probe the proposed link
between DL=D0 and the fluid structure in terms of the
configurational excess entropy, S2 [3,4]. As opposed to
Ref. [5], we do not find a simple exponential relation
between DL=D0 and S2 for all fluid area fractions.
Experiment.—The quasi-2D colloidal system, as intro-

duced in Ref. [22], consists of carboxylic acid function-
alized melamine formaldehyde particles (Microparticles
GmbH), with hard sphere diameters of σ ¼ 2.79 μm or
4.04 μm, dispersed in a 20/80 v/v% ethanol/water mixture.
A wide range of area fractions, ϕ ¼ 0.02–0.65, within the
fluid phase are studied. The particles sediment onto the
base of a glass sample cell with a height of 200 μm, and as
their gravitational lengths are 0.07 μm and 0.02 μm for the
small and large particles, respectively, the out-of-plane
fluctuations are negligible relative to the particle diameter
[22]. The colloidal system is imaged using video micros-
copy and the particle positions acquired using standard
particle tracking software [45].
Simulation.—MC simulations are equivalent to

Brownian dynamics (BD) simulations provided that the
maximal displacement Δ for the trial moves is infinitesi-
mally small [46]. Recently, it has also been shown that for
finite values of Δ a perfect matching between MC simu-
lations and BD can be achieved if one rescales the MC time
by the acceptance probability of the trial moves [47]. Here,
we follow this protocol and, given the 2D nature of the
experiment, perform MC simulations for systems of N ¼
900 hard disks in a square box with periodic boundary
conditions, choosing the trial displacement for a single
particle randomly from the interval ½−0.01σ; 0.01σ� for
each of the two spatial directions. One MC time unit (cycle)
is determined byN trial displacement moves, where in each
move a particle is randomly chosen and displaced by Δ. At
each area fraction between ϕ ¼ 0.05 and ϕ ¼ 0.69, the
system is equilibrated for 106 MC cycles where the first
50000 cycles are performed at constant pressure [48] and
then the remaining cycles at constant volume. Then, for a
given value of ϕ, the equilibration is followed by produc-
tion runs over 5 × 107 cycles.
Results and discussion.—We consider the mean-squared

displacement (MSD) of a tagged particle, δr2ðtÞ via
δr2ðtÞ ¼ h½rtðtÞ − r tð0Þ�2i, where rtðtÞ is the position of
a tagged particle at time t and h…i denotes the average over
all particles in the system and over different time origins.
The short- and long-time self-diffusion coefficients are
determined from the initial and long-time behavior of the
MSD as

DS ¼ lim
t→0

δr2ðtÞ
4t

and DL ¼ lim
t→∞

δr2ðtÞ
4t

: ð1Þ

The self-diffusion coefficient at infinite dilution, D0, for
both values of σ is determined using a linear extrapola-
tion of DSðϕÞ to ϕ ¼ 0. In Fig. 1, the MSDs from the
experiment and simulation are shown for a range of area

fractions. To allow for a direct comparison between experi-
ment and simulation, lengths are expressed in units of the
particle diameter σ and time in units of σ2=D0. Note that by
rescaling the data with the constant D0, we remove only
trivial hydrodynamic effects, i.e., those associated with the
movement of a single particle in a solvent.
At all area fractions, the MSDs show a linear regime at

short and long times, indicating the occurrence of short-
time and long-time diffusive motion. As the area fraction is
increased, there is the onset of a plateau at intermediate
times due to caging of the tagged particle by the shell of its
neighboring particles [49]. Figure 1 clearly shows that at
long times, there is quantitative agreement between the
MSDs of the experiment and those of the simulation. The
same agreement between experiment and simulation is also
evident in the variation with ϕ of the long-time self-
diffusion coefficient DL scaled by D0, which we plot in
Fig. 2. This is in contrast to the behavior at short times,
where the MSDs of the experiment show a ϕ dependence
while those of the simulation are independent of the area
fraction.
The differing short-time behavior of the experiment and

the simulation can be simply explained by considering the
interparticle interactions involved. In the short-time regime,
hydrodynamic interactions dominate [26,30,33–35]. As the
only interparticle interactions present in the simulation are
direct interactions, there is thus no dependence on ϕ at
short times. In contrast to this, in the experiment the
variation of DS with ϕ is ascribed to the HI between the
particles and/or the interplay of these interactions with
other surfaces present such as the wall of the sample
container [26,33–35]. The dependence of Ds upon ϕ,
shown in Fig. 2, is well described by a linear fit according
to DS=D0 ¼ ð1 − 0.85ϕÞ. The coefficient 0.85 is
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FIG. 1 (color online). Mean-squared displacements in units of
the particle diameter σ from experiment with σ ¼ 4.04 μm
(symbols) and simulation (lines) as a function of scaled time,
tD0=σ2, for the area fractions ϕ ¼ 0.1, 0.25, 0.39, 0.56, and 0.65.
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significantly smaller than that expected for DSðϕÞ in 3D
[50], consistent with earlier studies of quasi-2D colloidal
systems [26,34].
The variation of DS in the experiment defines an area-

fraction-dependent particle mobility associated with
nontrivial hydrodynamic effects, i.e., hydrodynamic inter-
actions, and hence the presence of a ϕ-dependent, funda-
mental time scale of motion in the system. It is widely
thought that the ϕ dependence of the long-time self-
diffusion coefficient should reflect this short-time particle
mobility in addition to the effect of direct interactions
between particles. As such, it has been suggested that DL
can be expressed as [43,44]

DL ¼ DSFDI: ð2Þ
Here, FDI is a function solely dependent on the direct
interactions and DS ¼ D0fðϕÞ, where fðϕÞ is a function
that accounts for the nontrivial hydrodynamic effects, i.e.,
HI, on DL. The direct hard-core interactions in the
simulation and the experiment are identical, as confirmed
by the excellent agreement between the simulated and
experimental gðrÞ shown in the inset of Fig. 4. As such, FDI
is identical for the simulation and the experiment, and
Eq. (2) may be tested by determining the ratio DL=DS as a
function of ϕ. In Fig. 3 we plot this ratio for both the
experiment and the simulation (where DS ¼ D0).
Substantial deviations between DL=DS of the experiment
and simulation are seen, indicating the failure of Eq. (2).
This directly indicates that the effect of hydrodynamics
cannot be fully captured by the short-time self-diffusion
coefficient as in Refs. [43,44].

More surprisingly, for our experimental system, the
reduced short-time particle mobility seems to have no
effect on the behavior of the long-time self-diffusion
coefficient. This is demonstrated by the striking quantita-
tive agreement between the long-time self-diffusion coef-
ficients of the experiment (with solvent) and those of the
simulation (without solvent), indicating that the reduction
in the diffusion coefficient with increasing ϕ is that
expected from the action of direct interactions alone. In
other words, the hydrodynamic interactions that lead to the
variation of the short-time diffusion coefficient are effec-
tively absent with respect to the ϕ dependence of the long-
time self-diffusion coefficient. Similar observations that HI
have only a very small effect on the long-time self-diffusion
coefficient have been made in earlier studies of hard disks
[51] and 3D hard sphere fluids [52–54]. Note that the data
of Ref. [54] are also incompatible with a scaling of the form
of Eq. (2), which suggests that our findings are not a unique
result of the experimental geometry.
The simplest explanation for this phenomenon is that the

behavior at long times is dominated by the direct hard-core
interactions and thus does not reflect the strong depend-
ence of the short-time self-diffusion coefficient on ϕ.
Alternatively, HI may contribute to the diffusive behavior
at long times but in a more complex manner than can be
predicted from the short-time self-diffusion coefficient. For
example, the observed agreement between our experiment
and simulation results could be described by an expression
of the form of Eq. (2), if an extra multiplicative term on the
right-hand side of Eq. (2), FHI, was added to compensate
for the slowing of the diffusion of particles by HI at short
times. Importantly, this term must then exactly cancel with
DS for all area fractions, i.e., FHI ¼ D0=DS. If this were the
case, it would be very remarkable and certainly deserve
further study.
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FIG. 3 (color online). The ratioDL=DS as a function of the area
fraction ϕ for our experiments and MC simulation. Note that for
the simulation, DS ¼ D0.
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FIG. 2 (color online). Short- and long-time self-diffusion
coefficient DS;L=D0 as a function of the area fraction ϕ for
the experiment (DS and DL) for two different particle diameters
σ ¼ 2.79 μm and 4.04 μm, and the MC simulation (DL). The
dashed line is a fit to the experimental data for DS according to
DS=D0 ¼ ð1 − 0.85ϕÞ. The inset shows DL=D0 as a function of
ϕ in a semilogarithmic plot. Note that for low area fractions,
DL=D0 ≈ 1–1.74ϕ.
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The excellent structural [22] and dynamic characteriza-
tion of our system at long times makes it an ideal testing
ground for a recent attempt to establish a link between the
long-time self-diffusion coefficient and the excess entropy
S2, which reflects the structure of fluids, as described on a
pair level by the radial distribution function gðrÞ [3–13].
For a 2D system, the first term of the excess entropy arising
from pair interactions is defined by [55]

S2 ¼ −
4kBϕ
σ2

Z
∞

0

½gðrÞln(gðrÞ) − (gðrÞ − 1)�rdr: ð3Þ

In a recent experimental study for a colloidal fluid in a
quasi-2D geometry, it has been claimed that there is a
simple relation between DL=D0 and S2, given by

DL=D0 ¼ expðαS2=kBÞ; ð4Þ
where α is a constant that accounts for the effects of direct
interactions and HI [5]. The value of α was found to be
dependent on the type of interface and interparticle potential,
with deviations of α from unity ascribed to differing HI [5].
In Fig. 4 we show S2 for the experiment and simulation

as a function of ϕ. The very good agreement results from
the excellent agreement of the corresponding gðrÞ, shown
in the inset of Fig. 4. Any small deviations arise from
difficulties associated with the experimental measurement
of gðrÞ and, in particular, the determination of the contact
value [22]. In Fig. 5 we show DL=D0 as a function of S2 in
a semilog plot for our experimental data and simulation.
Again, very good agreement between experiment and
simulation is found, and our results are also consistent
in magnitude with those of Ref. [5]. Nevertheless, our data
suggest that a single scaling law for the long-time

self-diffusion coefficient of the form of Eq. (4), which
would be linear in this representation, cannot be employed
over the whole range of ϕ [4,11,12].
It is possible, however, to apply Eq. (4) in the limit of low

area fractions. In this limit, DL=D0 ≈ 1 − 0.87ð−S2=kBÞ,
which follows from the low ϕ limits of −S2=kB ¼ 2ϕ and
DL=D0 ≈ 1–1.74ϕ (Fig. 2), respectively. This corresponds
to a value of α ¼ 0.87 in Eq. (4) for low ϕ, which is shown in
Fig. 5 as a solid line. While this describes the data well for
ϕ < 0.4, clear deviations from this expression are seen at
high ϕ. In this limit, Eq. (4) is only applicable if a prefactor is
introduced. By doing so, we find that α ¼ 0.54 and 0.58 for
the 2.79 μm and 4.04 μm particles, respectively, with a
prefactor of 0.66. This indicates that for a system dominated
by direct interactions, Eq. (4) with α ¼ 1 does not hold.
Furthermore, it also demonstrates that a deviation of α from
unity is not necessarily the result of HI, as we have shown
that these effectively do not affect the area fraction depend-
ence of the long-time self-diffusion coefficient.
Conclusions.—We have compared the short- and long-

time self-dynamics of a quasi-2D colloidal system to those of
a MC simulation of hard disks. The short-time self-diffusion
coefficient from the simulation is independent of the area
fraction while that from the experiment strongly varies with
the area fraction, indicating that for the experiment, hydro-
dynamic interactions are important at short times. In con-
trast, the experimental long-time self-diffusion coefficient
scaled by D0 is in quantitative agreement with that obtained
from the simulation. This quantitative agreement shows that
the reduction in particle mobility at short times in the
experiment does not lead to a proportional reduction of
the long-time self-diffusion coefficient and, more surpris-
ingly, that at long times, hydrodynamic interactions are
effectively absent. As our system is structurally and
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MC simulation and the experiment for particle diameters σ ¼
2.79 μm and 4.04 μm, as indicated. The solid line corresponds to
Eq. (4) with α ¼ 0.87, applicable at low ϕ.
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dynamically well understood at long times, we have used it
to test the relation between the configurational excess
entropy and the long-time self-diffusion coefficient and have
not found a simple exponential relation between these
quantities for all fluid area fractions.
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