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While the existence of a chiral spin liquid (CSL) on a class of spin-1=2 kagome antiferromagnets is by
now well established numerically, a controlled theoretical path from the lattice model leading to a low-
energy topological field theory is still lacking. This we provide via an explicit construction starting from
reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of
its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory
exhibit a Uð1Þ symmetry protected topological (SPT) phase, which upon promoting its Uð1Þ global
symmetry to a local gauge structure (“gauging”), yields the CSL. We suggest that such an explicit lattice-
based construction involving gauging of a SPT phase can be applied more generally to understand
topological spin liquids.

DOI: 10.1103/PhysRevLett.115.267209 PACS numbers: 75.10.Kt, 75.10.Jm

Introduction.—Quantum spin liquids (QSLs) are long-
range quantum entangled phases of interacting spins that
support fractionalized excitations—generally referred to as
spinons [1–4]. The task of predicting and controllably descri-
bing a QSL state relevant to a particular lattice spin model
remains a challenge to date. This is all the more important at
present in the context of understanding lattice Hamiltonians
relevant for material [5,6]. Based on our current theoretical
understanding of QSLs as deconfined phases of effective
gauge theories that emerge as low-energy descriptions of
spin models, answering the above questions requires us to
address twokey issues: (i) identifya faithful low-energy lattice
gauge theory (LGT) for a given microscopic spin model and
(ii) show that this lattice gauge model exhibits a QSL as a
deconfined phase supporting fractionalized excitations.
An example of such a controlled LGT description of

QSL is the quantum dimer model on the triangular lattice
[7], which can be mapped to a Z2 gauge theory [8,9],
thereby potentially realizing a Z2 QSL [7,10,11]. However,
systematic implementations of such a construction to
obtain other QSLs in two-dimensional magnets, such as
chiral [12–14] or critical QSLs [3,4], have proven difficult.
These QSLs can be obtained using LGT with fermionic
spinons [3,4]. However, how to obtain such fermionic
spinons in a controlled fashion is largely an open question.
On the other hand, a faithful LGT with bosonic spinons
and a compact Uð1Þ gauge field can be obtained for some
microscopic models, e.g., the quantum dimer model on
bipartite lattices [4,15,16] or spin models on the checker-
board lattice [17]. At low energies, these typically result
in pure compact Uð1Þ gauge theories [4], for which, in
two spatial dimensions, the LGT will be generically in
the confining phase [18] leading to conventional ordering
(e.g., valence bond solid), but in three spatial dimensions, it
can host a stable QSL phase [19–21].

An interesting situation occurs in the low-energy limit of
easy-axis spin-1=2 kagome antiferromagnets. In this case,
the low-energy physics is described by a compact Uð1Þ
LGT coupled to dynamical bosonic spinons [22,23] (in
contrast to the above-mentioned dimer models, which are
described by pure compact LGT). The dynamical bosonic
spinons carry finite gauge charge, and their presence can
have drastic influences on the system [22,24]. In addition,
recent numerical simulations [25] show that such systems
can stabilize QSLs, including the enigmatic kagome spin
liquid [26–30] as well as a chiral spin liquid (CSL) [12,13]
over large parameter regimes. The latter is a gapped QSL
that breaks time-reversal symmetry (spontaneously or
explicitly), exhibits topological ground-state degeneracy
when put on a torus, and supports gapless chiral edge states
with quantized (fractional) spin-Hall conductivity [12,13].
How can such kagome CSL be understood and described
from the point of view of the above Uð1Þ LGT? This is the
fundamental question that we will formulate an answer to.
In this Letter, taking clues from recent developments in

symmetry protected topological phases (SPTs) [31–34], we
explicitly construct a LGT description of the CSL phase
and obtain its continuum limit a controlled way. Unlike
QSLs, SPTs have no intrinsic topological order (and,
therefore, no fractionalized bulk excitations) but support
symmetry protected anomalous gapless [35] or topologi-
cally ordered edges [36]. We explore the idea of “gauging”
a SPT to obtain a topologically ordered phase [35,37]. This
means promoting the global symmetry that protects a given
SPT to a local gauge structure will yield a topologically
ordered phase. In particular, we derive a controlled
description of the CSL as a gauged Uð1Þ SPT (bosonic
integer quantum Hall state) [38–40]. We implement the
idea for two microscopic easy-axis kagome spin models,
which (or similar versions) were recently shown to host a
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CSL by means of numerical simulations (density matrix
renormalization group (DMRG) [41]) [25,42–44].
Lattice gauge theory.—We illustrate our main ideas for

the chiral spin-1=2 easy-axis model on the kagome lattice
described by the Hamiltonian

Hchiral ¼ Jz
X
hpqi

SzpSzq þ λ
X

p;q;r∈▽;△

~Sr · ð~Sp × ~SqÞ; ð1Þ

with Jz ≫ λ > 0, which is different from a previous work
[44] that studied case Jz ¼ 0. The three-spin term is the
scalar spin chirality, which breaks time reversal and parity
explicitly and has been used to engineer a CSL before
[44,45]. After discussing the general structure of our
construction, we apply it to the CSL phase of the gener-
alized XXZ model on the kagome lattice [25] towards the
end of the Letter.
In the classical Ising limit (λ ¼ 0) of Eq. (1), the ground-

state manifold has an extensive degeneracy and is given by
all classical spin configurations that fulfillX

p∈△;▽

Szp ¼ �1=2 ð2Þ

for each triangle of the kagome lattice. In this manifold, the
three-spin terms act as a perturbation which lifts the
classical degeneracy by forming a coherent superposition
of classical configurations. We next formulate the resulting
degenerate perturbation theory [22]. This is conveniently
done in terms of degrees of freedom that live at the center of
each triangle; these centers form a honeycomb lattice:

X
p∈△i

Szp ¼ a†i ai −
1

2
;

X
p∈▽k

Szp ¼ b†kbk −
1

2
: ð3Þ

Here, a†i , b
†
k denote the creation operator for the hard-core

boson on the A, B sublattice of the honeycomb lat-
tice (Fig. 1).
We can now define a lattice electric field Eik on the links

of the honeycomb lattice

Eik ¼ −Eki ¼ ðSzp þ 1=2Þ; ð4Þ

where iðkÞ ∈ △ð▽Þ, such that Gauss’s law is fulfilled on
each site of the honeycomb lattice:X

k;i∈△
Eik ¼ nai þ 1;

X
i;k∈▽

Eki ¼ −ðnbk þ 1Þ: ð5Þ

The summation runs over the three neighbors on the
honeycomb lattice. Here, nai ¼ a†i ai, n

b
k ¼ b†kbk, and �1

represent static background charges on the two sublattices.
The spin flip operators are then given by

Sþp ¼ expðiAikÞa†i b†k and S−p ¼ expðiAkiÞaibk; ð6Þ
where A ∈ ½0; 2πÞ is the vector potential conjugate to Eik
(here we have softened the hard-core constraint of Eik as
usually done in similar systems [4,16,20,21]). Conservation
of Sz implies a conserved Uð1Þ charge, and the a† and b†

that carry fractional þ1=2 charges, hence, are spinons. We
note that the ground state has vanishing magnetizationP

Sz ¼ 0; thus, the spinons are effectively at half filling
(per site). In addition, the two flavors of spinons carry
opposite Uð1Þ gauge charges of A, i.e., under gauge
transformation: ai → eiθiai, bk → e−iθkbk.
Note that the above mapping is similar to the one used in

quantum dimer models [4,16] and quantum or classical spin
ice [20,21] with the crucial difference [22] that the present
model has dynamical bosonic spinons in addition to the
compact Uð1Þ gauge field.
Using the above mapping, we can now represent the

effective microscopic model as a lattice gauge theory in
terms of the hard-core bosons (spinons) coupled to an
emergent Uð1Þ gauge field (unimportant factors omitted):

HLGT
chiral ¼ λ

X
⟪ij⟫

½eiAijþiπ=2ð2nbk − 1Þa†i ajþH:c:�

þ λ
X
⟪kl⟫

½eiAlkþiπ=2ð2naj − 1Þb†kblþH:c:�; ð7Þ

where we have the correlated hopping: that bosons (spi-
nons) are hopping within the second neighbors (e.g., ⟪ij⟫)
and are coupled to the boson density in the intermediate site
(e.g., k) as shown in Fig. 1(b). In principle, there is also a
Maxwell term for the gauge fields arising from ring
exchange around hexagons. However, since this is third
order in perturbation theory (∼λ3=J2z ≪ λ), we neglect it.
Gauge mean-field theory and the Uð1Þ SPT state.—We

now adopt a gauge mean-field (GMF) treatment [46] to
solve the above lattice gauge Hamiltonian Eq. (7) and find
the SPT phase advertised above. The strategy is as follows:
We start by treating the dynamical gauge fluctuation as a
mean-field gauge flux A ∼ hAi ¼ A0, and, consequently,
the local Uð1Þ gauge structure is replaced by a Uð1Þ global
symmetry. Then we solve the corresponding GMF
Hamiltonian and find that the ground state is a gapped
Uð1Þ SPT. Finally, we restore the local gauge invariance,
and the gap protects the ground state against the gauge

(a) (b)

FIG. 1 (color online). (a) Kagome lattice and medial honey-
comb lattice. (b) The lattice gauge theory is defined on a
honeycomb lattice. The gauge field is only defined on the first
neighbor link; hence, the gauge field on other links, i.e., the
second neighbor, is Aij ¼ Aik þAkj.
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fluctuation. This gauged Uð1Þ SPT, as we shall show, is
nothing but a CSL [37].
To completely define the GMF Hamiltonian, we need to

determine the mean-field gauge flux
P

⎔A
0 for each hex-

agon. As we neglect the Maxwell term, the dynamics of the
matter field alone determines the gauge flux. In other words,
the flux pattern for the GMFHamiltonian that has the lowest
energy is chosen. Assuming that the solution preserves
translation symmetry (as suggested by DMRG results), we
consider two possibilities,

P
⎔A

0¼0 or
P

⎔A
0¼π. Using

the infinite DMRG (iDMRG) method [47], we find that the
ground state with the background flux

P
⎔A

0 ¼ π (for each
hexagon) has much lower energy [ðE0 − EπÞ=Eπ ∼ 10%].
With the background flux specified, the GMF

Hamiltonian of Eq. (7) describes bosons with correlated
hopping subject to a time-reversal symmetry breaking flux
of π=2 (the sum of the gauge flux A0 and the original
hopping flux �π=2). This is exactly the same model as
studied in a previous work by us [40], where we found that
the ground state is a gapped Uð1Þ SPT phase with Hall
conductance σcxy ¼ 2. Phenomenologically, the correlated
hopping terms in Eq. (7) favor a mutual flux attachment
[39] and, thus, stabilize a Uð1Þ SPT phase. In passing,
we note that the correlated hopping term actually results
from the projection of the scalar chirality to the effective
lattice gauge model on the honeycomb lattice (see the
Supplemental Material [48]).
Chiral spin liquid.—The above GMF theory provides

insights into the correct continuum limit to describe the
CSL in the original kagome spin model. This involves
taking the low-energy continuum theory of the Uð1Þ SPT
and restoring the local Uð1Þ gauge invariance.
The GMF Hamiltonian has two global Uð1Þ symmetries

corresponding to (i) the overall particle or charge (na þ nb)
conservation arising from the Sz conservation of the original
spin model and (ii) the pseudospin (na − nb) symmetry
from the freezing of the gauge fluctuations, which should,
hence, be promoted back to a local gauge structure. TheUð1Þ
SPTis described by a condensation of composite bosons ~a, ~b,
which is due to the mutual flux attachment: attaching flux of
b to the density of a and vice versa [39]. Those composite
bosons ~a, ~b carry the samequantumnumbers as bosonsa and
b; specifically, ~a carries þ1=2 Sz charge and þ1 gauge
charge, and ~b carriesþ1=2 Sz charge and −1 gauge charge.
The low-energy theory including the gauge fluctuations is
then given by the Lagrangian [39]

L ¼ La þ Lb þ Lint þ LCS þ LA; ð8Þ
where

La ¼ i ~a�
�
∂0 − i

�
1

2
Aext
0 þA0

�
þ iα0

�
~a

−
1

2m

����∇ ~a − i

�
1

2
~Aext þ ~A

�
~aþ i~α ~a

����
2

; ð9Þ

Lb ¼ i ~b�
�
∂0 − i

�
1

2
Aext
0 −A0

�
þ iβ0

�
~b

−
1

2m

����∇ ~b − i

�
1

2
~Aext − ~A

�
~bþ i~β ~b

����
2

; ð10Þ

and

LCS ¼
1

4π
ϵμνλ½αμ∂νβλ þ βμ∂ναλ�; ð11Þ

LA ¼ −
1

4e2
ð∂μAν − ∂νAμÞ2: ð12Þ

Here, α, β are the statistical Chern-Simons (CS) fields that
implement the mutual flux attachment. Lint represent quad-
ratic and quartic terms for the composite bosons that can be
tuned to condense them. A represents the internal dynamic
gauge field, and Aext represents an external test field that
couples to the Sz charge of the microscopic models.
When ~a, ~b condense to stabilize the Uð1Þ SPT, the CS

statistical gauge fields are locked as

α ¼ 1

2
Aext þA; β ¼ 1

2
Aext −A: ð13Þ

Thus, the CS term becomes the action of CSL,

LCS ¼
1

4π
ϵμνλ

�
1

2
Aext
μ ∂νAext

λ − 2Aμ∂νAλ

�
: ð14Þ

The last term on the right, namely, the CS term for the
emergent gauge field, prohibits the creation of instantons
(monopoles) in 2þ 1 dimensions; hence, the system is
deconfined [4], and along with the Maxwell term for A
provides a mass m ∼ e2 for the photon and, hence, gaps it
out, and the low-energy theory is given by the first term
which gives a Hall conductivity (of Sz) σxy ¼ 1=2.
It is worth elaborating on two important points about

the relation between the Uð1Þ SPT and CSL. First, the
Uð1Þ SPT requires one global Uð1Þ symmetry, either the
Uð1Þ charge or theUð1Þ pseudospin, to protect it. TheUð1Þ
pseudospin symmetry (na − nb) corresponds to the local
gauge structure in the context of the CSL phase, which can
never be broken and, hence, protects the Uð1Þ SPT. On the
contrary, breaking theUð1Þ charge corresponds to breaking
global Sz conservation of the CSL. As the CSL is
topologically ordered, it is robust against such symmetry
breaking. Second, we need to understand how to match
edge modes, namely, the two counterpropagating edge
modes of the Uð1Þ SPT and the single chiral edge mode of
the CSL. The two edge modes of the Uð1Þ SPT are a left-
mover carrying charge and a right-mover carrying pseu-
dospin. Note that the pseudospin mode is coupled to the
dynamical gauge field A and will, thus, be removed after
integrating out A as it acquires a Higgs mass [49]. As a
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result, only the charge mode is left, which becomes the
chiral mode of the CSL. This edge mode does not require
the global Sz conservation to protect it.
Numerical verification.—Using numerical techniques,

we can show that the original kagome system Eq. (1) has
indeed a CSL ground state—in keeping with our gauge
theory analysis. Similar studies have been discussed in detail
of other systems with CSL elsewhere [25,42–44], and, thus,
here we will only briefly review our numerical results. In
particular, we use the iDMRG method [47] to obtain the
twofold topological degenerate ground states [50], calculate
fractional Hall conductance [51], obtain the braiding sta-
tistics (via modular matrices [13,52,53]), and probe the
chiral gapless edge mode from entanglement spectra [54]
(see the Supplemental Material [48]). All those calculations
validate the characteristic topological properties of a CSL,
which are robust against finite size effects, do not involve
any data extrapolation, and, hence, are quite reliable.
Interestingly, based on the lattice gauge theory, we can

identify the Wilson loop operator Wy in the microscopic
spin model. The Wilson loop operator is a global
operator that distinguishes different topological degen-
erate ground states and can be obtained as follows:
first create a pair of spinons, then wind them around the
torus or infinite cylinder, and finally annihilate them.
Then the expectation value of the Wilson loop operator
for the two topologically degenerate ground states (ψ1ðsÞ)
is Wy ∼�1 [Fig. 2(a)]. From our microscopic lattice
gauge theory, the Wilson loop corresponds to a gauge
flux around the noncontractible loop along the y direc-
tion [Fig. 2(b)]:

Wy ¼ exp
�
i
X
NCy

Aij

�
¼P

�Y
NCy

Sþi S
−
j

�
P¼PT yP: ð15Þ

P represents a projection into the classically degenerate
manifold. Technically, the projection can be treated
as a renormalization and approximated by hψ jWyjψi≈
hψ jT yjψi=hψ jT †

yT yjψi. Numerically, we find that

hψ jT yjψi=hψ jT †
yT yjψi ∼�0.8, which is close to the

above theoretical expectation.
Anisotropic kagome XXZ model.—We finally discuss

the relevance of our findings for the extended kagome
XXZ model [25]

HXXZ ¼ Jz
X
hpqi

SzpSzqþ
Jxy
2

X
hpqi

ðSþp S−q þH:c:Þ

þJ0xy
2

X
⟪pq⟫

ðSþpS−q þH:c:ÞþJ0xy
2

X
hhhpqiii

ðSþpS−q þH:c:Þ;

ð16Þ
with first-neighbor hi XXZ interactions, second- ⟪⟫, and
third- hhhiii neighbor XY interactions (see Fig. 1).
The general phase diagram Fig. 3(a) [25] shows an

extended chiral spin liquid phase that spontaneously breaks
time-reversal symmetry for sufficiently strong second- and
third-neighbor XY interactions Jxy ∼ Jxy0. Analogous to the
derivation for the chiral model Eq. (1) above, we find the
effective lattice gauge Hamiltonian for the limit Jxy,
J0xy ≪ Jz, which reads (with unimportant factors omitted)

HLGT
XXZ¼Jxy

�X
⟪ij⟫

eiAija†i ajþ
X
⟪kl⟫

eiAlkb†kblþH:c:

�

þJ0xy
X

hiki;hjli∈⎔

�
ðeiAika†i b

†
kÞðeiAljblajÞþH:c:

�
: ð17Þ

Again we use the GMF approach to solve this
Hamiltonian. An interesting observation is that its GMF
Hamiltonian can be written as the product of correlated
hopping terms (see the Supplemental Material [48]):

~HXXZ ¼ −Jxy
�X
ijm;k

χaim;kχ
a
mj;k þ

X
kln;j

χbkn;jχ
b
nl;j þ H:c:

�

− J0xy
X

hiki;hjli∈⎔
χaij;kχ

b
kl;j: ð18Þ

We use a generalized form of correlated hopping,

χaij;l ¼ ið2nbl − 1ÞeiA0
ija†i aj; χ

a
ji;l ¼ ðχaji;lÞ†; ð19Þ

and similarly for χb. Here we do not require site l to be the
nearest neighbor of site i and j. Thus, it is reasonable to
expect that a finite Jxy0 could induce a spontaneous

(b)(a)

FIG. 2 (color online). (a) Topological degenerate ground states
distinguished by the Wilson loop operator. (b) Approximation of
the Wilson loop operator of the microscopic kagome model.

FIG. 3 (color online). (a) Phase diagram of the XXZ kagome
model in Eq. (16). (b) Order parameter for spontaneous time-
reversal symmetry breaking in the GMF Hamiltonian; here, the
width of the cylinder is Wy ¼ 8 sites.
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time-reversal symmetry breaking with χa, χb ≠ 0 and result
in a Uð1Þ SPT phase (in the GMF Hamiltonian) as in the
correlated hopping model [40]. With the help of iDMRG
simulations, we find that this is indeed true for systems with
sufficiently large J0xy (see the Supplemental Material [48]).
For example, the order parameter χa, χb for the time-reversal
symmetry breaking is shown in Fig. 3(b). Therefore, the CSL
in the kagomeXXZmodel can also be explained as a gauged
Uð1Þ SPT following our construction.
Conclusion.—We have achieved a theoretical under-

standing of recent numerically discovered chiral spin
liquids in kagome antiferromagnets, which turns out to
be a gauged Uð1Þ symmetry protected topological phase. It
is a rare example that starting from a microscopic model, a
(non-Z2) spin liquid phase can be described in a controlled
way in two spatial dimensions, via a faithful gauge
theoretic model accounting for the QSL as its deconfined
phase. This framework might be applicable to numerous
interesting problems, such as solving the precise nature of
the kagome spin liquid as well as realizing exotic topo-
logical phases through the gauging procedure in related
kagome systems or doped quantum dimer models.
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